Skip to main content
Log in

Scale-Induced Closure for Approximations of Kinetic Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The order-of-magnitude method proposed by Struchtrup (Phys. Fluids 16(11):3921–3934, 2004) is a new closure procedure for the infinite moment hierarchy in kinetic theory of gases, taking into account the scaling of the moments. The scaling parameter is the Knudsen number Kn, which is the mean free path of a particle divided by the system size.

In this paper, we generalize the order-of-magnitude method and derive a formal theory of scale-induced closures on the level of the kinetic equation. Generally, different orders of magnitude appear through balancing the stiff production term of order 1/Kn with the advection part of the kinetic equation. A cascade of scales is then induced by different powers of Kn.

The new closure produces a moment distribution function that respects the scaling of a Chapman-Enskog expansion. The collision operator induces a decomposition of the non-equilibrium part of the distribution function in terms of the Knudsen number.

The first iteration of the new closure can be shown to be of second-order in Kn under moderate conditions on the collision operator, to be L 2-stable and to possess an entropy law. The derivation of higher order approximations is also possible. We illustrate the features of this approach in the framework of a 16 discrete velocities model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babovsky, H.: A numerical model for the Boltzmann equation with applications to micro flows. Comput. Math. Appl. 58, 791–804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bobylev, A.V.: The Chapman-Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29–31 (1982)

    ADS  Google Scholar 

  3. Bobylev, A.V.: Instabilities in the Chapman-Enskog expansion and hyperbolic burnett equations. J. Stat. Phys. 124(2–4), 371–399 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Broadwell, J.E.: Study of rarefied shear flow by the discrete velocity method. J. Fluid Mech. 19, 401–414 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Caiazzo, A., Junk, M., Rheinländer, M.: Comparison of expansion methods. Comput. Math. Appl. 58, 883–897 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cercignani, C.: The Boltzmann Equation and its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    MATH  Google Scholar 

  7. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  8. Freund, R.W., Hoppe, R.H.W.: Stoer/Bulirsch: Numerische Mathematik 1, 10th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed.) Handbuch der Physik, vol. 12. Springer, Berlin (1958)

    Google Scholar 

  11. Gu, X.-J., Emerson, D.: A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263–283 (2007)

    Article  MATH  ADS  Google Scholar 

  12. Jin, S., Slemrod, M.: Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103(5–6), 1009–1033 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1998)

    MATH  Google Scholar 

  15. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Interaction of Mechanics and Mathematics. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  16. Struchtrup, H.: Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11), 3921–3934 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Struchtrup, H., Torrilhon, M.: Regularization of grad’s 13-moment-equations: derivation and linear analysis. Phys. Fluids 15/9, 2668–2680 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. Struchtrup, H., Torrilhon, M.: H-theorem, regularization, and boundary conditions for linearized 13 moment equations. Phys. Rev. Lett. 99, 014502 (2007)

    Article  ADS  Google Scholar 

  20. Taheri, P., Torrilhon, M., Struchtrup, H.: Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Torrilhon, M.: Two-dimensional bulk microflow simulations based on regularized 13-moment-equations. SIAM Multiscale Model. Simul. 5(3), 695–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Torrilhon, M.: Regularized 13-moment-equations. In: 25th Intl. Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia (2006)

  23. Torrilhon, M., Struchtrup, H.: Regularized 13-moment-equations: shock structure calculations and comparison to burnett models. J. Fluid Mech. 513, 171–198 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Torrilhon, M., Struchtrup, H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227(3), 1982–2011 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, G., Mei, Y., Giao, S.: Generalized Inverses: Theory and Computations. Graduate Series in Mathematics, vol. 5. Science Press, Beijing/New York (2004). ISBN 7-03-012437-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauf, P., Torrilhon, M. & Junk, M. Scale-Induced Closure for Approximations of Kinetic Equations. J Stat Phys 141, 848–888 (2010). https://doi.org/10.1007/s10955-010-0073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0073-y

Keywords

Navigation