Skip to main content
Log in

Speedy Motions of a Body Immersed in an Infinitely Extended Medium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Ψ. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound (runaway effect). Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a heuristic level the case in which Ψ(r) diverges at short distances like gr α, g,α>0, by showing that the runaway effect still occurs if α<2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. M2AN Math. Model. Numer. Anal. 42, 263–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aoki, K., Tsuji, T., Cavallaro, G.: Approach to the steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 16309 (2009)

    Article  ADS  Google Scholar 

  3. Bahn, C., Park, Y.M., Yoo, H.J.: Non equilibrium dynamics of infinite particle systems with infinite range interaction. J. Math. Phys. 40, 4337–4358 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 101–111 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Buttà, P., Caglioti, E., Marchioro, C.: On the long time behavior of infinitely extended systems of particles interacting via Kac potentials. J. Stat. Phys. 108, 317–339 (2002)

    Article  MATH  Google Scholar 

  6. Buttà, P., Caglioti, E., Marchioro, C.: On the motion of a charged particle interacting with an infinitely extended system. Commun. Math. Phys. 233, 545–569 (2003)

    MATH  ADS  Google Scholar 

  7. Buttà, P., Caglioti, E., Marchioro, C.: On the violation of Ohm’s law for bounded interactions: a one dimensional system. Commun. Math. Phys. 249, 353–382 (2004)

    Article  MATH  ADS  Google Scholar 

  8. Buttà, P., Manzo, F., Marchioro, C.: A simple Hamiltonian model of runaway particle with singular interaction. Math. Models Methods Appl. Sci. 15, 753–766 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caglioti, E., Marchioro, M.: On the long time behavior of a particle in an infinitely extended system in one dimension. J. Stat. Phys. 106, 663–680 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caglioti, E., Marchioro, C., Pulvirenti, M.: Non-equilibrium dynamics of three-dimensional infinite particle systems. Commun. Math. Phys. 215, 25–43 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Caglioti, E., Caprino, S., Marchioro, C., Pulvirenti, M.: The Vlasov equation with infinite mass. Arch. Ration. Mech. Anal. 159, 85–108 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caprino, S., Marchioro, C., Pulvirenti, M.: On the Vlasov-Helmholtz equations with infinite mass. Commun. Partial Differ. Equ. Phys. 27, 791–808 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Math. Appl. 27, 123–145 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Cavallaro, G., Marchioro, C.: Necessary condition on the interaction to obtain a microscopic model of viscous friction. Preprint (2009)

  17. Cavallaro, G., Marchioro, C., Spitoni, C.: Dynamics of infinitely many particles mutually interacting in three dimensions via a bounded superstable long-range potential. J. Stat. Phys. 120, 367–416 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Dobrushin, R.L.: Vlasov equations. Soviet J. Funct. Anal. 13, 60–110 (1979)

    MathSciNet  Google Scholar 

  19. Dobrushin, R.L., Fritz, J.: Non equilibrium dynamics of one-dimensional infinite particle system with hard-core interaction. Commun. Math. Phys. 55, 275–292 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Fritz, J.: Some remarks of non-equilibrium dynamics of infinite particle systems. J. Stat. Phys. 34, 67539–67556 (1977)

    MathSciNet  Google Scholar 

  21. Fritz, J., Dobrushin, R.L.: Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction. Commun. Math. Phys. 57, 67–81 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hauray, M., Jabin, P.E.: N-particles approximation of the Vlasov-Poisson equation with singular potentials. Arch. Ration. Mech. Anal. 183, 489–524 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gruber, C., Piasecki, J.: Stationary motion of the adiabatic piston. Physica A 268, 412–423 (1999)

    Article  ADS  Google Scholar 

  24. Lanford, O.E.: Classical mechanics of one-dimensional systems with infinitely many particles. I. An existence theorem. Commun. Math. Phys. 9, 176–191 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Lanford, O.E.: Classical mechanics of one-dimensional systems with infinitely many particles. II. Kinetic theory. Commun. Math. Phys. 11, 257–292 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Lebowitz, J.L., Piasecki, J., Sinai, Ya.G.: Scaling dynamics of a massive piston in a ideal gas. In: Hard Ball Systems and Lorentz Gas. Encycl. Math. Sci., vol. 101, pp. 217–227. Springer, Berlin (2000)

    Chapter  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Physical Kinetics: Course in Theoretical Physics, vol. 10. Pergamon Press, London (1981)

    Google Scholar 

  28. Neunzert, H.: An introduction to the nonlinear Boltzmann-Vlasov equation. In: Lecture Notes in Mathematics, vol. 1048, pp. 115–123. Springer, Berlin (1981)

    Google Scholar 

  29. Sganga, D.: Moto di una particella carica in un fluido di Vlasov libero. Graduate thesis, SAPIENZA Università di Roma (2008) [in Italian]

  30. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Buttà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttà, P., Ferrari, G. & Marchioro, C. Speedy Motions of a Body Immersed in an Infinitely Extended Medium. J Stat Phys 140, 1182–1194 (2010). https://doi.org/10.1007/s10955-010-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0036-3

Keywords

Navigation