Skip to main content
Log in

The Speed of Evolution in Large Asexual Populations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an asexual biological population of constant size N evolving in discrete time under the influence of selection and mutation. Beneficial mutations appear at rate U and their selective effects s are drawn from a distribution g(s). After introducing the required models and concepts of mathematical population genetics, we review different approaches to computing the speed of logarithmic fitness increase as a function of N, U and g(s). We present an exact solution of the infinite population size limit and provide an estimate of the population size beyond which it is valid. We then discuss approximate approaches to the finite population problem, distinguishing between the case of a single selection coefficient, g(s)=δ(ss b ), and a continuous distribution of selection coefficients. Analytic estimates for the speed are compared to numerical simulations up to population sizes of order 10300.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, R.D.H., M’Gonigle, L.K., Otto, S.P.: The distribution of beneficial mutant effects under strong selection. Genetics 174, 2071–2079 (2006)

    Article  Google Scholar 

  2. Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., Lenski, R.E., Kim, J.F.: Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009)

    Article  Google Scholar 

  3. Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K.W., Velculescu, V.E., Vogelstein, B., Nowak, M.A.: Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3, e225 (2007)

    Article  MathSciNet  Google Scholar 

  4. Blythe, R.A., McKane, A.J.: Stochastic models of evolution in genetics, ecology and linguistics. J. Stat. Mech.: Theory Exp. P07018 (2007)

  5. Brunet, E., Derrida, B., Mueller, A., Munier, S.: Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Phys. Rev. E 73, 056126 (2006)

    Article  ADS  Google Scholar 

  6. Brunet, E., Derrida, B., Mueller, A., Munier, S.: Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Brunet, E., Rouzine, I., Wilke, C.: The stochastic edge in adaptive evolution. Genetics 179, 603–620 (2008)

    Article  Google Scholar 

  8. Crow, J.F., Kimura, M.: Evolution in sexual and asexual populations. Am. Nat. 99, 439–450 (1965)

    Article  Google Scholar 

  9. Crow, J.F., Kimura, M.: Evolution in sexual and asexual populations: A reply. Am. Nat. 103, 89–91 (1969)

    Article  Google Scholar 

  10. Desai, M.M., Fisher, D.S.: Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007)

    Article  Google Scholar 

  11. Desai, M.M., Fisher, D.S., Murray, A.W.: The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007)

    Article  Google Scholar 

  12. Drossel, B.: Biological evolution and statistical physics. Adv. Phys. 50, 209–295 (2001)

    Article  ADS  Google Scholar 

  13. Durrett, R.: Probability Models for DNA Sequence Evolution. Springer, Berlin (2002)

    MATH  Google Scholar 

  14. Elena, S.F., Lenski, R.E.: Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003)

    Article  Google Scholar 

  15. Eyre-Walker, A., Keightley, P.D.: The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007)

    Article  Google Scholar 

  16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1950)

    MATH  Google Scholar 

  17. Felsenstein, J.: The evolutionary advantage of recombination. Genetics 78, 737–756 (1974)

    Google Scholar 

  18. Fisher, D.S.: Evolutionary dynamics. In: Bouchaud, J.P., Mézard, M., Dalibard, J. (eds.) Complex Systems. Elsevier, Amsterdam (2007)

    Google Scholar 

  19. Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930)

    MATH  Google Scholar 

  20. Fogle, C.A., Nagle, J.L., Desai, M.M.: Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics 180, 2163–2173 (2008)

    Article  Google Scholar 

  21. Gerrish, P.J.: The rhythm of microbial adaptation. Nature 413, 299–302 (2001)

    Article  ADS  Google Scholar 

  22. Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual population. Genetica 102–103, 127–144 (1998)

    Article  Google Scholar 

  23. Guess, H.A.: Evolution in finite population with infinitely many types. Theor. Popul. Biol. 5, 417–430 (1974)

    Article  Google Scholar 

  24. Guess, H.A.: Limit theorems for some stochastic evolution models. Ann. Prob. 2, 14–31 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Haldane, J.B.S.: A mathematical theory of natural and artificial selection, part V: Selection and mutation. Proc. Camb. Philos. Soc. 23, 838–844 (1927)

    Article  MATH  Google Scholar 

  26. Haldane, J.B.S.: The Causes of Evolution. Longmans Green, London (1932)

    Google Scholar 

  27. Hegreness, M., Shoresh, N., Hartl, D., Kishony, R.: An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006)

    Article  ADS  Google Scholar 

  28. Jain, K.: Loss of least-loaded class in asexual populations due to drift and epistasis. Genetics 179, 2125–2134 (2008)

    Article  Google Scholar 

  29. Jain, K., Krug, J.: Adaptation in simple and complex fitness landscapes. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds.) Structural Approaches to Sequence Evolution: Molecules, Networks and Populations. Springer, Berlin (2007)

    Google Scholar 

  30. Joyce, P., Rokyta, D.R., Beisel, C.J., Orr, H.A.: A general extreme value theory model for the adaptation of DNA sequences under strong selection and weak mutation. Genetics 180, 1627–1643 (2008)

    Article  Google Scholar 

  31. Kessler, D.A., Levine, H., Ridgway, D., Tsimring, L.: Evolution on a smooth landscape. J. Stat. Phys. 87, 519–544 (1997)

    Article  MATH  ADS  Google Scholar 

  32. Kim, Y., Orr, H.A.: Adaptation in sexuals vs. asexuals: clonal interference and the Fisher-Muller model. Genetics 171, 1377–1386 (2005)

    Article  Google Scholar 

  33. Kimura, M.: “Stepping stone” model of population. Ann. Rep. Natl. Inst. Genet. Jpn. 3, 62–63 (1953)

    Google Scholar 

  34. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962)

    Google Scholar 

  35. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)

    Google Scholar 

  36. Kingman, J.F.C.: A simple model for the balance between selection and mutation. J. Appl. Prob. 15, 1–12 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kloster, M.: Analysis of evolution through competitive selection. Phys. Rev. Lett. 95, 168701 (2005)

    Article  ADS  Google Scholar 

  38. Lässig, M., Valleriani, A. (eds.): Biological Evolution and Statistical Physics. Springer, Berlin (2002)

    Google Scholar 

  39. Maynard Smith, J.: Evolution in sexual and asexual populations. Am. Nat. 102, 469–473 (1968)

    Article  Google Scholar 

  40. Maynard Smith, J.: What use is sex? J. Theor. Biol. 30, 319–335 (1971)

    Article  Google Scholar 

  41. Moran, P.A.P.: Random processes in genetics. Proc. Camb. Philos. Soc. 54, 60–71 (1958)

    Article  MATH  Google Scholar 

  42. Muller, H.J.: Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932)

    Article  Google Scholar 

  43. Orr, H.A.: The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003)

    Google Scholar 

  44. Panja, D.: Effects of fluctuations on propagating fronts. Phys. Rep. 393, 87 (2004)

    Article  Google Scholar 

  45. Park, S.C., Krug, J.: Clonal interference in large populations. Proc. Natl. Acad. Sci. USA 104, 18135–18140 (2007)

    Article  ADS  Google Scholar 

  46. Park, S.C., Krug, J.: Evolution in random fitness landscapes: the infinite sites model. J. Stat. Mech.: Theory Exp. P04014 (2008)

  47. Peng, W., Gerland, U., Hwa, T., Levine, H.: Dynamics of competitive evolution on a smooth landscape. Phys. Rev. Lett. 90, 088103 (2003)

    Article  ADS  Google Scholar 

  48. Perfeito, L., Fernandes, L., Mota, C., Gordo, I.: Adaptive mutations in bacteria: High rate and small effects. Science 317, 813–815 (2007)

    Article  ADS  Google Scholar 

  49. Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M., Tans, S.J.: Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007)

    Article  ADS  Google Scholar 

  50. Rouzine, I.M., Brunet, E., Wilke, C.O.: The traveling-wave approach to asexual evolution: Muller’s ratchet and speed of adaptation. Theor. Popul. Biol. 73, 24–46 (2008)

    Article  Google Scholar 

  51. Rouzine, I.M., Wakeley, J., Coffin, J.M.: The solitary wave of asexual evolution. Proc. Natl. Acad. Sci. USA 100, 587–592 (2003)

    Article  ADS  Google Scholar 

  52. Rozen, D.E., de Visser, J.A.G.M., Gerrish, P.J.: Fitness effects of fixed beneficial mutations in microbial populations. Curr. Biol. 12, 1040–1045 (2002)

    Article  Google Scholar 

  53. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29 (2003)

    Article  MATH  ADS  Google Scholar 

  54. Sella, G., Hirsh, A.E.: The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA 102, 9541–9546 (2005)

    Article  ADS  Google Scholar 

  55. Tsimring, L.S., Levine, H., Kessler, D.A.: RNA virus evolution via a fitness-space model. Phys. Rev. Lett. 76, 4440–4443 (1996)

    Article  ADS  Google Scholar 

  56. de Visser, J.A.G.M., Park, S.C., Krug, J.: Exploring the effect of sex on empirical fitness landscapes. Am. Nat. 174, S15–S30 (2009)

    Article  Google Scholar 

  57. de Visser, J.A.G.M., Rozen, D.E.: Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 172, 2093–2100 (2006)

    Article  Google Scholar 

  58. de Visser, J.A.G.M., Zeyl, C.W., Gerrish, P.J., Blanchard, J.L., Lenski, R.E.: Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999)

    Article  ADS  Google Scholar 

  59. Watterson, G.A.: Mutant substitution at linked nucleotide sites. Adv. Appl. Prob. 14, 206–224 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  60. Watterson, G.A.: Substitution times for mutant nucleotides. J. Appl. Prob. A 19, 59–70 (1982)

    Article  MathSciNet  Google Scholar 

  61. Wilke, C.O.: The speed of adaptation in large asexual populations. Genetics 167, 2045–2053 (2004)

    Article  Google Scholar 

  62. Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931)

    Google Scholar 

  63. Wright, S.: Isolation by distance. Genetics 28, 114–156 (1943)

    Google Scholar 

  64. Yu, F., Etheridge, A.: Rate of adaptation of large populations. In: Pontarotti, P. (ed.) Evolutionary Biology from Concept to Application. Springer, Berlin (2008)

    Google Scholar 

  65. Yu, F., Etheridge, A., Cuthbertson, C.: Asymptotic behaviour of the rate of adaptation (2007). arXiv:0708.3453v3 [math.PR]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Krug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SC., Simon, D. & Krug, J. The Speed of Evolution in Large Asexual Populations. J Stat Phys 138, 381–410 (2010). https://doi.org/10.1007/s10955-009-9915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9915-x

Keywords

Navigation