Skip to main content
Log in

The Global Statistics of Return Times: Return Time Dimensions Versus Generalized Measure Dimensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate return times in dynamical systems, i.e. the time required by a trajectory to complete a return journey to a neighborhood of the initial position. In particular, we study the relations holding between the scaling exponents of phase-space moments of return times in balls of diminishing radius, on the one side, and the generalized dimensions of invariant measures, on the other. Because of a heuristic use of Kac theorem, the former have been used in place of the latter in numerical and experimental investigations: to mark the distinction, we call them return time dimensions. We derive a full set of inequalities linking generalized dimensions of invariant measures and return time dimensions. We comment on their optimality with the aid of two maps due to von Neumann–Kakutani and to Gaspard–Wang. We conjecture a formula for the return time dimensions in a typical system. We only assume that the dynamical system under investigation is ergodic and that motion takes place in a compact, finite dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M.: Sharp error terms and necessary conditions for exponential hitting times in mixing processes. Ann. Probab. 32, 243–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Badii, R., Politi, A.: Statistical description of chaotic attractors: the dimension function. J. Stat. Phys. 40, 725–750 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Badii, R., Politi, A.: Renyi dimensions from local expansion rates. Phys. Rev. A 35, 1288–1293 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  4. Barbaroux, J.M., Germinet, F., Tcheremchantsev, S.: Generalized fractal dimensions: equivalence and basic properties. J. Math. Pures Appl. 80, 977–1012 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bressaud, X., Zweimüller, R.: Non exponential law of entrance times in asymptotically rare evens for intermittent maps with infinite invariant measure. Ann. Henri Poincaré 2, 501–512 (2001)

    Article  MATH  Google Scholar 

  6. Chazottes, J.-R., Ugalde, E.: Entropy estimation and fluctuations of hitting and recurrence times for Gibbsian sources. Discrete Contin. Dyn. Syst. 5, 565–586 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Collet, P., Galves, A., Schmitt, B.: Fluctuations of repetition times for Gibbsian sources. Nonlinearity 12, 1225–1237 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cutler, C.D.: Some results on the behaviour and estimation of the fractal dimensions of distributions on attractors. J. Stat. Phys. 62, 651–708 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Gaspard, P., Wang, X.-J.: Sporadicity: between periodic and chaotic dynamical behaviors. Proc. Natl. Acad. Sci. USA 85, 4591–4595 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Germinet, F., Tcheremchantsev, S.: Generalized fractal dimensions on the negative axis for compactly supported measures. Math. Nachr. 279, 543–570 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grassberger, P.: Generalized dimension of strange attractors. Phys. Lett. A 97, 227–230 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Grassberger, P., Procaccia, I.: Characterization of strange sets. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  13. Gratrix, S., Elgin, J.N.: Pointwise dimension of the Lorenz Attractor. Phys. Rev. Lett. 92, 14101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. Guysinsky, M., Yaskolko, S.: Coincidence of various dimensions associated with metrics and measures on metric spaces. Discrete Contin. Dyn. Syst. 3, 591–603 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Halsey, T.C., Jensen, M.H.: Hurricanes and butterflies. Nature 428, 127 (2004)

    Article  ADS  Google Scholar 

  16. Halsey, T.C., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  17. Haydn, N., Vaienti, S.: The limiting distribution and error terms for return times of dynamical systems. Discrete Contin. Dyn. Syst. 10, 589–616 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haydn, N., Luevano, J., Mantica, G., Vaienti, S.: Multifractal properties of return time statistics. Phys. Rev. Lett. 88, 224502 (2003)

    Article  ADS  Google Scholar 

  19. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–444 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Hirata, M., Saussol, B., Vaienti, S.: Statistics of return times: a general framework and new applications. Commun. Math. Phys. 206, 33–55 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Jensen, M.H., Kadanoff, L.P., Libchaber, A., Procaccia, I., Stavans, J.: Global universality at the onset of chaos: results of a forced Rayleigh–Bénard experiment. Phys. Rev. Lett. 55, 2798–2801 (1985)

    Article  ADS  Google Scholar 

  22. Kac, M.: Probability and Related Topics in Physical Sciences. AMS, Providence (1959)

    MATH  Google Scholar 

  23. Luevano, J., Penne, V., Vaienti, S.: Multifractal spectrum via return times. Preprint mp-arc 00-232 (2000)

  24. Olsen, L.: First return times: multifractal spectra and divergence points. Discrete Contin. Dyn. Syst. 10, 635–656 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ornstein, D.S., Weiss, B.: Entropy and data compression schemes. IEEE Trans. Inf. Theory 39, 78–83 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pastor-Satorras, R., Riedi, R.H.: Numerical estimates of the generalized dimensions of the Hénon attractor for negative q. J. Phys. A, Math. Gen. 29, L391–L398 (1996)

    Article  MATH  ADS  Google Scholar 

  27. Pesin, Ya.: Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago (1997)

    Google Scholar 

  28. Pesin, Ya., Weiss, H.: A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Stat. Phys. 86, 233–275 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Petersen, K.E.: Ergodic Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  30. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  31. Riedi, R.H.: An improved multifractal formalism and self-similar measures. J. Math. Anal. Appl. 189, 462–490 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saussol, B.: On fluctuations and the exponential statistics of return times. Nonlinearity 14, 179–191 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Schulz-Baldez, H., Bellissard, J.: Anomalous transport: a mathematical framework. Rev. Math. Phys. 10, 1–46 (1998)

    Article  MathSciNet  Google Scholar 

  34. Vaienti, S.: Generalised spectra for the dimensions of strange sets. J. Phys. A 21, 2313–2320 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. von Neumann, J.: Zür Operatorenmethode in der klassichen Mechanik. Ann. Math. 33, 587–642 (1932) (Our map is presented on page 630)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Mantica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantica, G. The Global Statistics of Return Times: Return Time Dimensions Versus Generalized Measure Dimensions. J Stat Phys 138, 701–727 (2010). https://doi.org/10.1007/s10955-009-9894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9894-y

Navigation