Skip to main content
Log in

On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper concerns L 1-convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (−4≤γ<0), with and without angular cutoff. We prove the time-averaged L 1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|γ|. For the usual L 1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with −1≤γ<0, there are algebraic upper and lower bounds on the rate of L 1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, W.: Entropy dissipation and long-range interaction. Arch. Ration. Mech. Anal. 152(1), 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation, entropy dissipation and long-range interaction. Arch. Ration. Mech. Anal. 77(1), 11–21 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14(1), 47–61 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Caflisch, R.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commun. Math. Phys. 74, 71–95 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Caflisch, R.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74, 97–109 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74(3–4), 743–782 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Carlen, E.A., Lu, X.G.: Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys. 112(1–2), 59–134 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199(3), 521–546 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    MATH  Google Scholar 

  11. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  12. Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Ration. Mech. Anal. 123(4), 387–404 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Desvillettes, L., Mouhot, C.: Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials. Asymptot. Anal. 54(3–4), 235–245 (2007)

    MATH  MathSciNet  Google Scholar 

  14. DiPerna, R.J., Lions, P.-L.: Global solutions of Boltzmann’s equation and the entropy inequality. Arch. Ration. Mech. Anal. 114(1), 47–55 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goudon, T.: On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Stat. Phys. 89(3–4), 751–776 (1997)

    MATH  ADS  MathSciNet  Google Scholar 

  16. Guo, Y., Strain, R.: Decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions, P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, I. J. Math. Kyoto Univ. 34(2), 391–427 (1994)

    MATH  MathSciNet  Google Scholar 

  18. Lions, P.L.: Regularity and compactness for Boltzmann collision operators without angular cut-off. C.R. Acad. Sci. Paris, Sér. I 326(1), 37–41 (1998)

    MATH  ADS  Google Scholar 

  19. Lu, X.G.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228(2), 409–435 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lu, X.G.: Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation. J. Stat. Phys. 96(3–4), 765–796 (1999)

    Article  MATH  Google Scholar 

  21. Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261(3), 629–672 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, Reading (1966)

    Google Scholar 

  23. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Stat. Phys. 98(5–6), 1279–1309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Villani, C.: Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation. Rev. Mat. Iberoam. 15(2), 335–352 (1999)

    MATH  MathSciNet  Google Scholar 

  27. Villani, C.: In: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

    Google Scholar 

  28. Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Wennberg, B.: Regularity in the Boltzmann equation and the Radon transform. Commun. Partial Differ. Eqs. 19(11–12), 2057–2074 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86(5–6), 1053–1066 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Carlen.

Additional information

E.A. Carlen work partially supported by US National Science Foundation grant DMS 06-00037. M.C. Carvalho work partially supported by POCI/MAT/61931/2004.

X. Lu work partially supported by NSF of China grant 10571101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlen, E.A., Carvalho, M.C. & Lu, X. On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials. J Stat Phys 135, 681–736 (2009). https://doi.org/10.1007/s10955-009-9741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9741-1

Keywords

Navigation