Skip to main content
Log in

Field Theory Conjecture for Loop-Erased Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give evidence that the functional renormalization group (FRG), developed to study disordered systems, may provide a field theoretic description for the loop-erased random walk (LERW), allowing to compute its fractal dimension in a systematic expansion in ε=4−d. Up to two loop, the FRG agrees with rigorous bounds, correctly reproduces the leading logarithmic corrections at the upper critical dimension d=4, and compares well with numerical studies. We obtain the universal subleading logarithmic correction in d=4, which can be used as a further test of the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lawler, G.F.: A self avoiding walk. Duke Math. J. 47, 655–693 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duplantier, B.: Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers. Physica A 191, 516–522 (1992)

    Article  ADS  Google Scholar 

  3. Kozma, G.: The scaling limit of loop-erased random walk in three dimensions. Acta Math. 199, 29–152 (2007). arXiv:math/0508344

    Article  MATH  MathSciNet  Google Scholar 

  4. Majumdar, S.N.: Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. Phys. Rev. Lett. 68, 2329–2331 (1992)

    Article  ADS  Google Scholar 

  5. Lawler, G.F.: The logarithmic correction for loop-erased walk in four dimensions. In: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. (Special issue) 347–362 (1995)

  6. Lawler, G.F.: Intersections of Random Walks. Birkhäuser Boston, Cambridge (1991)

    Google Scholar 

  7. Lawler, G.F.: Loop-erased random walk. In: Perplexing Problems in Probability. Progress in Probability vol. 44, pp. 197–217. Birkhäuser Boston, Cambridge (1999)

    Google Scholar 

  8. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000). arXiv:math/9904022

    Article  MATH  MathSciNet  Google Scholar 

  9. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–996 (2004). arXiv:math/0112234

    Article  MATH  MathSciNet  Google Scholar 

  10. Lawler, G.F.: Loop-erased self-avoiding random walk and the Laplacian random walk. J. Phys. A 20, 4565–4568 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lawler, G.F.: Loop-erased self-avoiding random walk in two and three dimensions. J. Stat. Phys. 50, 91–108 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kenyon, R.: The asymptotic distribution of the discrete Laplacian. Acta Math. 185, 239–286 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Agrawal, H., Dhar, D.: Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions. Phys. Rev. E 63, 056115 (2001)

    Article  ADS  Google Scholar 

  14. Guttman, A.J., Bursill, R.J.: Critical exponent for the loop erased self-avoiding walk by Monte Carlo methods. J. Stat. Phys. 59, 1–9 (1990). arXiv:math-ph/0011042

    Article  ADS  Google Scholar 

  15. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Majumdar, S.N., Dhar, D.: Equivalence between the Abelian sandpile model and the q→0 limit of the Potts model. Physica A 185, 129–145 (1992)

    Article  ADS  Google Scholar 

  18. Priezzhev, V.B., Ktitarev, D.V., Ivashkevich, E.V.: Formation of avalanches and critical exponents in an Abelian sandpile model. Phys. Rev. Lett. 76, 2093 (1996)

    Article  ADS  Google Scholar 

  19. Ktitarev, D.V., Lübeck, S., Grassberger, P., Priezzhev, V.B.: Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model. Phys. Rev. E 61, 81 (2000)

    Article  ADS  Google Scholar 

  20. Narayan, O., Middleton, A.A.: Avalanches and the renormalization group for pinned charge-density waves. Phys. Rev. B 49, 244–256 (1994)

    Article  ADS  Google Scholar 

  21. Alava, M.: Scaling in self-organized criticality from interface depinning? J. Phys. Condens. Mater 14, 2353–2360 (2002)

    Article  ADS  Google Scholar 

  22. Narayan, O., Fisher, D.S.: Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48, 7030–7042 (1993)

    Article  ADS  Google Scholar 

  23. Nattermann, T., Stepanow, S., Tang, L.H., Leschhorn, H.: Dynamics of interface depinning in a disordered medium. J. Phys. II (France) 2, 1483–1488 (1992)

    Article  Google Scholar 

  24. Chauve, P., Le Doussal, P., Wiese, K.J.: Renormalization of pinned elastic systems: how does it work beyond one loop? Phys. Rev. Lett. 86, 1785–1788 (2001)

    Article  ADS  Google Scholar 

  25. Le Doussal, P., Wiese, K.J., Chauve, P.: Two-loop functional renormalization group theory of the depinning transition. Phys. Rev. B 66, 174201 (2002)

    Article  ADS  Google Scholar 

  26. Chitra, R., Giamarchi, T., Le Doussal, P.: Disordered periodic systems at the upper critical dimension. Phys. Rev. B 59, 4058–4065 (1999). arXiv:cond-mat/9809300

    Article  ADS  Google Scholar 

  27. Fedorenko, A.A., Stepanow, S.: Depinning transition at the upper critical dimension. Phys. Rev. E 67, 057104 (2003)

    Article  ADS  Google Scholar 

  28. Le Doussal, P., Wiese, K.J.: Higher correlations. universal distributions, and finite size scaling in the field theory of depinning. Phys. Rev. E 68, 046118 (2003). arXiv:cond-mat/0301465

    Google Scholar 

  29. Duplantier, B.: Polymer chains in four dimensions. Nucl. Phys. B 275, 319–355 (1986)

    Article  ADS  Google Scholar 

  30. Grassberger, P., Hegger, R., Schäfer, L.: Self-avoiding walks in 4 dimensions—logarithmic corrections. J. Phys. A 27, 7265–7282 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Oxford University Press, London (1989)

    Google Scholar 

  32. Le Doussal, P., Middleton, A.A., Wiese, K.J.: Statistics of static avalanches in a random pinning landscape. arXiv:0803.1142 (2008). Le Doussal P. and Wiese K.J.: In preparation

  33. Fedorenko, A.A., Le Doussal, P., Wiese, K.J.: Statistics of avalanches at the depinning transition. In preparation

  34. Middleton, A.A., Le Doussal, P., Wiese, K.J.: Measuring functional renormalization group fixed-point functions for pinned manifolds. Phys. Rev. Lett. 98, 155701 (2007). arXiv:cond-mat/0606160

    Article  ADS  Google Scholar 

  35. Read, N.: Exponents and bounds for uniform spanning trees in d dimensions. Phys. Rev. E 70, 027103 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Fedorenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, A.A., Le Doussal, P. & Wiese, K.J. Field Theory Conjecture for Loop-Erased Random Walks. J Stat Phys 133, 805–812 (2008). https://doi.org/10.1007/s10955-008-9642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9642-8

Keywords

Navigation