Skip to main content
Log in

Interactive Statistical Mechanics and Nonlinear Filtering

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper connects non-equilibrium statistical mechanics and optimal nonlinear filtering. The latter concerns the observation-conditional behaviour of Markov signal processes, and thus provides a tool for investigating statistical mechanics with partial observations. These allow entropy reduction, illustrating Landauer’s Principle in a quantitative way.

The joint process comprising a signal and its nonlinear filter is irreversible in its invariant distribution, which therefore corresponds to a non-equilibrium stationary state of the associated joint system. Macroscopic entropy and energy flows are identified for this state. Since these are driven by observations internal to the system, they do not cause entropy increase, and so the joint system makes statistical mechanical sense in reverse time.

Time reversal yields a dual system in which the signal and filter exchange roles. Despite the structural similarity of the original and dual systems, there is a substantial asymmetry in their complexities. This reveals the direction of time, despite the systems being in stationary states that do not produce entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benes̆, V.E.: Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 65–92 (1981)

    MathSciNet  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  MATH  Google Scholar 

  3. Bhatt, A.G., Budhiraja, A., Karandikar, R.L.: Markov property and ergodicity of the nonlinear filter. SIAM J. Control Optim. 39, 928–949 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borovkov, A.A.: Ergodicity and Stability of Stochastic Processes. Wiley, New York (1998)

    MATH  Google Scholar 

  5. Chaleyat-Maurel, M., Michel, D.: Des résultats de non existence de filtre de dimension finie. Stochastics 13, 83–102 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Clark, J.M.C.: The design of robust approximations to the stochastic differential equations of nonlinear filtering. In: Skwirzynski, J.K. (ed.) Communication Systems and Random Process Theory. NATO Advanced Study Institute Series, pp. 721–734. Sijthoff and Noordhoff, Alphen aan den Rijn (1978)

    Google Scholar 

  7. Clark, J.M.C., Crisan, D.: On a robust version of the integral representation formula of nonlinear filtering. Probab. Theory Relat. Fields 133, 43–56 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clark, J.M.C., Ocone, D., Coumarbatch, C.: Relative entropy and error bounds for filtering of Markov processes. Math. Control Signals Syst. 12, 346–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Daum, F.E.: Exact finite-dimensional nonlinear filters. IEEE Trans. Automat. Contr. AC-31, 616–622 (1986)

    Article  MathSciNet  Google Scholar 

  10. Davis, M.H.A.: Linear Estimation and Stochastic Control. Chapman and Hall, London (1977)

    MATH  Google Scholar 

  11. Davis, M.H.A.: A pathwise solution of the equations of nonlinear filtering. Theory Probab. Appl. 27, 167–175 (1983)

    Article  Google Scholar 

  12. Doob, J.L.: Measure Theory. Springer, New York (1994)

    MATH  Google Scholar 

  13. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    MATH  Google Scholar 

  14. Duncan, T.E.: On the calculation of mutual information. SIAM J. Appl. Math. 19, 215–220 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  16. Fujisaki, M., Kallianpur, G., Kunita, H.: Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9, 19–40 (1972)

    MATH  MathSciNet  Google Scholar 

  17. Gaveau, B., Schulman, L.S.: Creation, dissipation and recycling of resources in non-equilibrium systems. J. Stat. Phys. 110, 1317–1367 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, San Diego (1970)

    MATH  Google Scholar 

  20. Kallianpur, G., Striebel, C.: Estimation of stochastic systems: arbitrary system process with additive white noise observation errors. Ann. Math. Stat. 39, 785–801 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991)

    MATH  Google Scholar 

  22. Kolmogorov, A.N.: A new metric invariant of transitive dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR 111, 861–864 (1958)

    MathSciNet  Google Scholar 

  23. Kushner, H.J.: On the differential equations satisfied by conditinal probability densities of Markov processes, with applications. SIAM J. Control 2, 106–119 (1962)

    MathSciNet  Google Scholar 

  24. Kushner, H.J.: Dynamical equations for non-linear filtering. J. Differ. Equ. 3, 179–190 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  25. Landauer, R.: Dissipation and heat generation in the computing. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–366 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes 1—General Theory. Springer, Berlin (1977)

    Google Scholar 

  28. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Marcus, S.I.: Algebraic and geometric methods in nonlinear filtering theory. SIAM J. Control Optim. 22, 817–844 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maxwell, J.C.: Theory of Heat. Longmans, London (1871)

    Google Scholar 

  31. Mayer-Wolf, E., Zakai, M.: On a formula relating the Shannon information to the Fisher information for the filtering problem. In: Korezlioglu, H., Mazziotto, G., Szpirglas, S. (eds.) Filtering and Control of Random Processes. Lecture Notes in Control and Information Sciences, vol. 61, pp. 164–171. Springer, Berlin (1984)

    Chapter  Google Scholar 

  32. Mitter, S.K.: Geometric theory of nonlinear filtering. Outils Modeles Math. Automat. 3, 37–55 (1983)

    MathSciNet  Google Scholar 

  33. Mitter, S.K., Newton, N.J.: A Variational approach to nonlinear estimation. SIAM J. Control Optim. 42, 1813–1833 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mitter, S.K., Newton, N.J.: Information and entropy flow in the Kalman-Bucy filter. J. Stat. Phys. 118, 145–176 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Nelson, E.: The adjoint Markov process. Duke Math. J. 25, 671–690 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  36. Newton, N.J.: Dual Kalman-Bucy filters and interactive entropy production. SIAM J. Control Optim. 45, 998–1016 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Newton, N.J.: Dual nonlinear filters and entropy production. SIAM J. Control Optim. 46, 1637–1663 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Propp, M.B.: The thermodynamic properties of Markov processes. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1985)

  39. Sinai, Ya.G.: On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

    MATH  MathSciNet  Google Scholar 

  40. Stratonovich, R.L.: Conditional Markov processes. Theory Probab. Appl. 5, 156–178 (1960)

    Article  Google Scholar 

  41. van Putten, C., van Schuppen, J.H.: Invariance properties of the conditional independence relation. Ann. Probab. 13, 934–945 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wonham, W.M.: Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM J. Control 2, 347–369 (1965)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Newton.

Additional information

This work was partially supported by Leverhulme Trust Research Fellowship 2003/0426, by MURI Grant F49620-02-1-0325 (Complex Adaptive Networks for Co-operative Control), by ARO-MURI Grant DAAD19-00-1-0466 (Data Fusion in Large Arrays of Microsensors (sensor web)) and by NSF-ITR Grant CCR-0325774 Collaborative Research: New Approaches to Experimental Design and Statistical Analysis of Genomic and Structural Biological Data from Multiple Sources.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, N.J. Interactive Statistical Mechanics and Nonlinear Filtering. J Stat Phys 133, 711–737 (2008). https://doi.org/10.1007/s10955-008-9622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9622-z

Keywords

Navigation