Skip to main content
Log in

Global Spectral Gap for Dirichlet-Kac Random Motions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove that the global spectral gap, for any Dirichlet-Kac random motion, is equal to the convergence rate of the limit motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnsley, M., Turchetti, G.: A study of Boltzmann energy equations. Ann. Phys. 159, 1–61 (1985). doi:10.1016/0003-4916(85)90191-5

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Carlen, E., Carvalho, M.C., Loss, M.: Determination of the spectral gap in Kac’s master equation and related stochastic evolutions. Acta Math. 191, 1–54 (2003). doi:10.1007/BF02392695

    Article  MATH  MathSciNet  Google Scholar 

  3. Carlen, E., Geronimo, J., Loss, M.: Determination of the spectral gap in the Kac model for physical momentum and energy conserving collisions. Available at http://arxiv.org/abs/0705.3729v3 (2007)

  4. Ferland, R.: Law of large numbers for pairwise interacting particle systems. Math. Models Methods Appl. Sci. 4, 1–15 (1994). doi:10.1142/S0218202594000029

    Article  MATH  MathSciNet  Google Scholar 

  5. Ferland, R., Giroux, G.: Cutoff-type Boltzmann equations: convergence of the solution. Adv. Appl. Math. 8, 98–107 (1987). doi:10.1016/0196-8858(87)90007-8

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferland, R., Giroux, G.: An exponential rate of convergence for a class of Boltzmann processes. Stoch. Stoch. Rep. 35, 79–91 (1991). doi:10.1080/17442509108833691

    MATH  MathSciNet  Google Scholar 

  7. Hoare, M.H.: Quadratic transport and soluble Boltzmann equation. Adv. Chem. Phys. 56, 1–140 (1984)

    Article  Google Scholar 

  8. Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York (1972)

    MATH  Google Scholar 

  9. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956)

    Google Scholar 

  10. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169 (2002). doi:10.1086/338446

    Article  Google Scholar 

  11. Matsui, T., Motoki, M., Kamatani, N.: Polynomial time approximation sampler for discretized Dirichlet distribution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) Algorithms and Computation: 14th International Symposium, ISAAC Proceedings, Kyoto, Japan, December 15–17, 2003, pp. 676–685. Springer, Berlin (2003)

    Google Scholar 

  12. Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold Co., London/New York/Toronto (1971)

    MATH  Google Scholar 

  13. Tanaka, H.: Propagation of chaos for certain purely discontinuous Markov processes with interaction. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17, 253–272 (1970)

    Google Scholar 

  14. Wild, E.: On Boltzmann’s equation in the kinetic theory of gases. Proc. Camb. Phil. Soc. 47, 602–609 (1951)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Ferland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giroux, G., Ferland, R. Global Spectral Gap for Dirichlet-Kac Random Motions. J Stat Phys 132, 561–567 (2008). https://doi.org/10.1007/s10955-008-9571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9571-6

Keywords

Navigation