Skip to main content
Log in

On Guided Waves Created by Line Defects

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The propagation of guided waves in photonic crystal fibers (PCFs) is studied. A photonic crystal fiber can be regarded as a perfect two-dimensional photonic crystal (PC) with a line defect along the axial direction. Under the assumption that the background spectrum has gaps, we give a simple condition on the parameters of the medium and of the line defect, which ensures the rise of eigenvalues in a specified subinterval of the given gap of the photonic crystal fiber. Using the modified Combes-Thomas estimates, we prove that the eigenfunctions corresponding to the eigenvalues decay exponentially away from the line defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbaroux, J.M., Combes, J.M., Hislop, P.D.: Localization near band edges for random Schrödinger operators. Helv. Phys. Acta 70, 16–43 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Benisty, H.: Modal analysis of optical guides with two-dimensional photonic band-gap boundaries. J. Appl. Phys. 79, 7483–7492 (1996)

    Article  ADS  Google Scholar 

  3. Birks, T.A., Roberts, P.J., Russel, P.St.J., Atkin, D.M., Shepherd, T.J.: Full 2-D photonic crystal bandgaps in silica/air structure. Electron. Lett. 31, 1941–1943 (1995)

    Article  Google Scholar 

  4. Bonnet-Ben Dhia, A.S., Joly, P.: Mathematical analysis and numerical approximation of optical waveguides. In: Bao, G., Cowsar, L., Masters, W. (eds.) Mathematical Modeling in Optical Science. SIAM, Philadelphia (2001)

    Google Scholar 

  5. Combes, J.M., Thomas, L.: Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators. Commun. Math. Phys. 34, 251–270 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S.J., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  Google Scholar 

  7. Ferrando, A., Silvestre, E., Miret, J.J., Andrs, P., Andrs, M.V.: Full-vector analysis of realistic photonic crystal fiber. Opt. Lett. 24, 276–278 (1999)

    ADS  Google Scholar 

  8. Filonov, N.: Gaps in the spectrum of the Maxwell operator with periodic coefficients. Commun. Math. Phys. 240, 161–170 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Figotin, A., Klein, A.: Localization of classical waves I: Acoustic waves. Commun. Math. Phys. 180, 439–482 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Figotin, A., Klein, A.: Localization of classical waves II: Electromagnetic waves. Commun. Math. Phys. 184, 411–441 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Figotin, A., Klein, A.: Localized classical waves created by defects. J. Stat. Phys. 86, 165–177 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model. SIAM J. Appl. Math. 56, 68–88 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. II. 2D photonic crystals. SIAM J. Appl. Math. 56, 1561–1620 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Germinet, F., Klein, A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Am. Soc. 131, 911–920 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hempel, R., Lienau, K.: Spectral properties of periodic media in the large coupling limit. Commun. Partial Differ. Equ. 25, 1445–1470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  17. John, S.G., Joannopoulos, J.G.: Photonic Crystals: The Road from Theory to Practice. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  18. Joly, P., Poirier, C.: Electromagnetic open waveguides: mathematical analysis. Research report (1994)

  19. Klein, A., Koines, A.: A general framework for localization of classical waves: I. Inhomogeneous media and defect eigenmode. Math. Phys. Anal. Geom. 4, 97–130 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Knight, J.C.: Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  21. Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  22. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  23. Kuchment, P., Ong, B.: On guided waves in photonic crystal waveguides. In: Waves in Periodic and Random Media. Contemp. Math., vol. 339, pp. 105–115. American Mathematical Society, Providence (2004)

    Google Scholar 

  24. Kuchment, P., Vainberg, B.: On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials. Commun. Partial Differ. Equ. 25, 1809–1826 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Miao, D., Ma, F.: Mathematical analysis of the guided waves in photonic crystal fibers. J. Math. Anal. Appl. 338, 599–619 (2007)

    Article  MathSciNet  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Analysis of Operators, vol. IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  27. Simon, B.: Schrödinger semi-groups. Bull. Am. Math. Soc. 7, 447–526 (1982)

    MATH  ADS  Google Scholar 

  28. Soussi, S.: Modeling photonic crystal fibers. Adv. Appl. Math. 36, 288–317 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Miao.

Additional information

The work was supported by the NSFC (10431030) of China.

D. Miao is currently visiting Department of Mathematics, Michigan State University, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, D., Ma, F. On Guided Waves Created by Line Defects. J Stat Phys 130, 1197–1215 (2008). https://doi.org/10.1007/s10955-008-9480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9480-8

Keywords

Navigation