Skip to main content
Log in

Phase Transition of Meshwork Models for Spherical Membranes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We have studied two types of meshwork models by using the canonical Monte Carlo simulation technique. The first meshwork model has elastic junctions, which are composed of vertices, bonds, and triangles, while the second model has rigid junctions, which are hexagonal (or pentagonal) rigid plates. Two-dimensional elasticity is assumed only at the elastic junctions in the first model, and no two-dimensional bending elasticity is assumed in the second model. Both of the meshworks are of spherical topology. We find that both models undergo a first-order collapsing transition between the smooth spherical phase and the collapsed phase. The Hausdorff dimension of the smooth phase is H≃2 in both models as expected. It is also found that H≃2 in the collapsed phase of the second model, and that H is relatively larger than 2 in the collapsed phase of the first model, but it remains in the physical bound, i.e., H<3. Moreover, the first model undergoes a discontinuous surface fluctuations transition at the same transition point as that of the collapsing transition, while the second model undergoes a continuous transition of surface fluctuation. This indicates that the phase structure of the meshwork model is weakly dependent on the elasticity at the junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch 28C, 693–703 (1973)

    Google Scholar 

  2. Polyakov, A.M.: Fine structure of strings. Nucl. Phys. B 268, 406–412 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kleinert, H.: The membrane properties of condensing strings. Phys. Lett. B 174, 335–338 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. Nambu, Y.: Duality and hadrodynamics. In: Eguchi, T., Nishijima, K. (eds.) Broken Symmetry (Selected Papers of Y. Nambu), pp. 280–301. World Scientific, Singapore (1995)

    Google Scholar 

  5. Goto, T.: Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theor. Phys. 46, 1560–1569 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Nelson, D.: The statistical mechanics of membranes and interfaces. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces, 2nd edn., pp. 1–16. World Scientific, Singapore (2004)

    Google Scholar 

  7. Gompper, G., Schick, M.: Self-assembling amphiphilic systems. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 16. pp. 1–176. Academic Press, London (1994)

    Google Scholar 

  8. Bowick, M., Travesset, A.: The statistical mechanics of membranes. Phys. Rep. 344, 255–308 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Peliti, L., Leibler, S.: Effects of thermal fluctuations on systems with small surface tension. Phys. Rev. Lett. 54(15), 1690–1693 (1985)

    Article  ADS  Google Scholar 

  10. David, F., Guitter, E.: Crumpling transition in elastic membranes. Eur. Lett. 5(8), 709–713 (1988)

    Article  ADS  Google Scholar 

  11. Paczuski, M., Kardar, M., Nelson, D.R.: Landau theory of the crumpling transition. Phys. Rev. Lett. 60, 2638–2640 (1988)

    Article  ADS  Google Scholar 

  12. Chaieb, S., Natrajan, V.K., Abd El-rahman, A.: Glassy conformation in wrinkled membranes. Phys. Rev. Lett. 96, 078101(1–4) (2006)

    Article  ADS  Google Scholar 

  13. Polyakov, A.: In: Gauge Fields and Strings. Contemporary Concepts in Physics, vol. 3, p. 151. Harwood Academic, New York (1987)

    Google Scholar 

  14. Green, M.B., Schwartz, J.H., Witten, E.: Superstring Theory, vols. 1, 2. Cambridge Univ. Press, Cambridge (1987)

    Google Scholar 

  15. Cerda, E., Mahadevan, L.: Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80, 2358–2361 (1998)

    Article  ADS  Google Scholar 

  16. da Silveira, R., Chaieb, S., Mahadevan, L.: Rippling instability of a collapsing bubble. Science 287, 1468–1471 (2000)

    Article  ADS  Google Scholar 

  17. Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  18. Kantor, Y., Nelson, D.R.: Phase transitions in flexible polymeric surfaces. Phys. Rev. A 36, 4020–4032 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. Baumgartner, A., Ho, J.S.: Crumpling of fluid vesicles. Phys. Rev. A 41, 5747–5750 (1990)

    Article  ADS  Google Scholar 

  20. Catterall, S.M., Kogut, J.B., Renken, R.L.: Numerical study of field theories coupled to 2D quantum gravity. Nucl. Phys. Proc. Suppl. B 25, 69–86 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ambjorn, J., Irback, A., Jurkiewicz, J., Petersson, B.: The theory of random surface with extrinsic curvature. Nucl. Phys. B 393, 571–600 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. Koibuchi, H.: Grand canonical simulations of string tension in elastic surface model. Eur. Phys. J. B 45, 377–383 (2005)

    Article  ADS  Google Scholar 

  23. Grest, G.: Self-avoinding tethered membranes embedded into high dimensions. J. Phys. I (France) 1, 1695–1708 (1991)

    Article  ADS  Google Scholar 

  24. Bowick, M., Travesset, A.: Universality classes of self-avoiding fixed-connectivity membranes. Eur. Phys. J. E 5, 149–160 (2001)

    Article  Google Scholar 

  25. Bowick, M., Cacciuto, A., Thorleifsson, G., Travesset, A.: Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes. Phys. Rev. Lett. 87, 148103(1–4) (2001)

    Article  ADS  Google Scholar 

  26. Kownacki, J.-P., Diep, H.T.: First-order transition of tethered membranes in three-dimensional space. Phys. Rev. E 66, 066105(1–5) (2002)

    Article  ADS  Google Scholar 

  27. Koibuchi, H., Kuwahata, T.: First-order phase transition in the tethered surface model on a sphere. Phys. Rev. E 72, 026124(1–6) (2005)

    Article  ADS  Google Scholar 

  28. Endo, I., Koibuchi, H.: First-order phase transition of the tethered membrane model on spherical surfaces. Nucl. Phys. B 732(FS), 426–443 (2006)

    Article  MATH  ADS  Google Scholar 

  29. Boey, S.K., Boal, D.H., Disher, D.E.: Simulations of the erythrocyte cytoskeleton at large deformation I: Microscopic model. Biophys. J. 75, 1573–1583 (1998)

    Article  ADS  Google Scholar 

  30. Disher, D.E., Boal, D.H., Boey, S.K.: Simulations of the erythrocyte cytoskeleton at large deformation II: Micropipette aspiration. Biophys. J. 75, 1584–1597 (1998)

    Google Scholar 

  31. Koibuchi, H.: Phase transition of triangulated spherical surfaces with elastic skeletons. J. Stat. Phys. 127, 457–470 (2007). cond-mat/0607225

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Koibuchi, H.: Phase transition of compartmentalized surface models. Eur. Phys. J. B 57, 321–330 (2007). arXiv:0705.2103

    Article  ADS  Google Scholar 

  33. Koibuchi, H.: Phase transition of a skeleton model for surfaces. In: ICIC2006 Proceedings Part 3. Springer Lecture Notes in Bioinformatics, vol. 4115, pp. 223–229 (2006). cond-mat/0605367

  34. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  35. Wheater, J.F.: Random surfaces: from polymer membranes to strings. J. Phys. A 27, 3323–3353 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. Janke, W.: Histograms and all that. In: Dunweg, B., Landau, D.P., Milchev, A.I. (eds.) Computer Simulations of Surfaces and Interfaces. NATO Science Series, II. Mathematics, Physics and Chemistry, vol. 114. Proceedings of the NATO Advanced Study Institute Albena, Bulgaria, 9–20 September 2002, pp. 137–157. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  37. Privman, V.: Finite-size scaling theory. In: Privman, V. (ed.) Finite Size Scaling and Numerical Simulation of Statistical Systems, p. 1. World Scientific, Singapore (1989)

    Google Scholar 

  38. Binder, K.: Applications of Monte Carlo methods to statistical physics. Rep. Progr. Phys. 60, 487–559 (1997)

    Article  ADS  Google Scholar 

  39. Billoire, A., Neuhaus, T., Berg, B.: Observation of FSS for a first-order phase transition. Nucl. Phys. B 396, 779–788 (1993)

    Article  ADS  Google Scholar 

  40. Koibuchi, H.: Collapsing transition of spherical tethered surfaces with many holes. Phys. Rev. E 75, 011129(1–6) (2007). cond-mat/0701233

    ADS  Google Scholar 

  41. Binder, K.: Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B 43, 119–140 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koibuchi.

Additional information

This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, H. Phase Transition of Meshwork Models for Spherical Membranes. J Stat Phys 129, 605–621 (2007). https://doi.org/10.1007/s10955-007-9385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9385-y

Keywords

Navigation