Skip to main content
Log in

Loss- and Gain-of-Function Mutations in Cancer: Mass-action, Spatial and Hierarchical Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the stochastic dynamics of the two most common patterns in cancer initiation and progression: loss-of-function and gain-of-function mutations. We consider three stochastic models of cell populations with a constant size: a mass-action model, a spatial model and a hierarchical model. For gain-of-function mutations, we calculate the probability of mutant fixation starting from one mutant cell. For loss-of-function mutations, we calculate the rate of production of double-hit mutants. It turns out that the results are different in all models. This suggests that simple mass-action models are often misleading when studying cancer dynamics. Moreover, our results also allow us to think about various types of tissue architecture and its protective role against cancer. In particular, we show that hierarchical tissue organization lowers the risk of cancerous transformations. Also, cellular motility and long-range signaling can decrease the risk of cancer in solid tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. R. Araujo and D. McElwain, A history of the study of solid tumor growth: The contribution of mathematical modeling. Bull. Math Biol. 66(5):1039–1091 (2004).

    Article  MathSciNet  Google Scholar 

  2. 2. N. Bellomo, A. Bellouquid, and M. Delitala, Mathematical topics in the modeling complex multicellular systems and tumor immune cells competition. Math. Mod. Meth. Appl. Sci. 14:1683–1733 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. 3. N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumor evolution and its interation with the immune system. Math. Comp. Modeling 22(3–4):413–452 (2000).

    Article  MathSciNet  Google Scholar 

  4. 4. A. Bellouquid and B. Delitala, Mathematical methods and tools of kinetic theory towards modelling complex biological systems. Math. Mod. Meth. Appl. Sci. 15:1639–1666 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. M. Bjerknes, Expansion of mutant stem cell populations in the human colon. J. Theor. Biol. 178(4):381–385 (1996).

    Article  Google Scholar 

  6. 6. J. Cairns, Mutation selection and the natural history of cancer. Nature 255(5505):197–200 (1975).

    Article  ADS  Google Scholar 

  7. 7. M. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumors. Math. Comp. Modeling 23(6):47–87 (1996).

    Article  MATH  Google Scholar 

  8. 8. M. Chaplain and G. Lolas, Spatio-temporal heterogeneity arising in a mathematical model of cancer invasion of tissue. Math. Mod. Meth. Appl. Sci. 15:1685–1734 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. 9. A. Dewanji, S. H. Moolgavkar, and E. G. Luebeck, Two-mutation model for carcinogenesis: joint analysis of premalignant and malignant lesions. Math. Biosci. 104(1):97–109 (1991).

    Article  MATH  Google Scholar 

  10. 10. W. D. Hazelton, M, S. Clements, and S. H. Moolgavkar, Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epidemiol. Biomarkers Prev. 14(5):1171–1181 (2005).

    Article  Google Scholar 

  11. 11. W. F. Heidenreich, E. G. Luebeck, W. D. Hazelton, H. G. Paretzke, and S. H. Moolgavkar, Multistage models and the incidence of cancer in the cohort of atomic bomb survivors. Radiat. Res. 158(5):607–614 (2002).

    Article  Google Scholar 

  12. 12. W. F. Heidenreich, E. G. Luebeck, and S. H. Moolgavkar, Some properties of the hazard function of the two-mutation clonal expansion model. Risk Anal. 17(3):391–399 (1997).

    Article  Google Scholar 

  13. 13. N. Heisterkamp, K. Stam, J. Groffen, A. de Klein, and G. Grosveld, Structural organization of the bcr gene and its role in the Ph' translocation. Nature 315(6022):758–761 (1985).

    Article  ADS  Google Scholar 

  14. 14. Y. Iwasa, F. Michor and M. A. Nowak, Stochastic tunnels in evolutionary dynamics. Genetics 166(3):1571–1579 (2004).

    Article  Google Scholar 

  15. 15. S. Karlin and H. Taylor, A First Course in Stochastic Processes, Second Edition (Academic Press, New York, 1975).

    MATH  Google Scholar 

  16. 16. A. G. J. Knudson, Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68(4):820–823 (1971).

    Article  ADS  Google Scholar 

  17. 17. N. Komarova, Spatial stochastic models for cancer initiation and progression. Bull. Math. Biol., DOI: 10.1007/s11538-005-9046-8:1–27 (2006).

  18. 18. N. Komarova and P. Cheng, Epithelial tissue architecture protects against cancer. Math. Biosci. 200(1):90–117 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  19. 19. N. L. Komarova, A. Sengupta, and M. A. Nowak, Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor. Biol. 223(4):433–450 (2003).

    Article  MathSciNet  Google Scholar 

  20. 20. N. L. Komarova and L. Wang, Initiation of colorectal cancer: Where do the two hits hit? Cell Cycle 3(12):1558–1565 (2004).

    Google Scholar 

  21. 21. N. L. Komarova and D. Wodarz, The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proc. Natl. Acad. Sci. USA 101(18):7017–7021 (2004).

    Article  ADS  Google Scholar 

  22. 22. C. Lengauer, K. W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. Nature 396(6712):643–649 (1998).

    Article  ADS  Google Scholar 

  23. 23. M. P. Little and E. G. Wright, A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math. Biosci. 183(2):111–134 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. L. A. Loeb, Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51(12):3075–3079 (1991).

    Google Scholar 

  25. 25. L. A. Loeb, A mutator phenotype in cancer. Cancer Res. 61(8):3230–3239 (2001).

    Google Scholar 

  26. 26. E. G. Luebeck, W. F. Heidenreich, W. D. Hazelton, H. G. Paretzke, and S. H. Moolgavkar. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects. Radiat. Res. 152(4):339–351 (1999).

    Article  Google Scholar 

  27. 27. E. G. Luebeck and S. H. Moolgavkar, Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. USA 99(23):15095–15100 (2002).

    Article  ADS  Google Scholar 

  28. 28. F. Michor, Y. Iwasa, H. Rajagopalan, C. Lengauer, and M. A. Nowak, Linear model of colon cancer initiation. Cell Cycle 3(3):358–362 (2004).

    Google Scholar 

  29. 29. S. H. Moolgavkar, The multistage theory of carcinogenesis and the age distribution of cancer in man. J. Natl. Cancer Inst. 61(1):49–52 (1978).

    Google Scholar 

  30. 30. M. A. Nowak, F. Michor, N. L. Komarova, and Y. Iwasa, Evolutionary dynamics of tumor suppressor gene inactivation. Proc. Natl. Acad. Sci. USA 101(29):10635–10638 (2004).

    Article  ADS  Google Scholar 

  31. 31. E. Parzen, Stochastic Processes, vol. 24 of Classics in Applied Mathematics (SIAM, 1999).

  32. 32. S. Ro and B. Rannala, Methylation patterns and mathematical models reveal dynamics of stem cell turnover in the human colon. Proc. Natl. Acad. Sci. USA 98(19):10519–10521 (2001). Comment.

    Article  Google Scholar 

  33. 33. T. Strachan and A. P. Read, Human Molecular Genetics 2 (John Wiley & Sons, Inc., 1999).

  34. 34. W. Y. Tan, Stochastic Models of Carcinogenesis (Marcel Drekker, New York, 1991).

    Google Scholar 

  35. 35. W. Y. Tan and C. W. Chen, Stochastic models of carcinogenesis, some new insight. Math. Comput. Modeling 28:49–71 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  36. 36. B. Vogelstein and K. W. Kinzler, The Genetic Basis of Human Cancer (McGraw-Hill, 1997).

  37. 37. B. Vogelstein and K. W. Kinzler, Cancer genes and the pathways they control. Nat. Med. 10(8):789–799 (2004).

    Article  Google Scholar 

  38. 38. D. Wodarz and N. Kornarova, Computational Biology of Cancer: Lecture Notes and Mathematical Modeling (World Scientific, 2005).

  39. 39. Y. Yatabe, S. Tavare, and D. Shibata, Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. USA 98(19):10839–10844 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarova, N.L. Loss- and Gain-of-Function Mutations in Cancer: Mass-action, Spatial and Hierarchical Models. J Stat Phys 128, 413–446 (2007). https://doi.org/10.1007/s10955-006-9238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9238-0

Keywords

Navigation