Skip to main content
Log in

Overcrowding estimates for zeroes of Planar and Hyperbolic Gaussian analytic functions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the point process of zeroes of certain Gaussian analytic functions and find the asymptotics for the probability that there are more than m points of the process in a fixed disk of radius r, as \(r\rightarrow \infty\). For the planar Gaussian analytic function, \(\sum_{n \geq 0}\frac{a_n z^n}{\sqrt{n!}}\), we show that this probability is asymptotic to \({e^{-\frac{1}{2}m^2\log(m)}}\). For the hyperbolic Gaussian analytic functions, \({\sum_{n\geq 0}{-\rho \choose n}^{1/2} a_n z^n}, \rho > 0\), we show that this probability decays like \(e^{-cm^2}\).

In the planar case, we also consider the problem posed by Mikhail Sodin2 on moderate and very large deviations in a disk of radius r, as \(r\rightarrow \infty\). We partially solve the problem by showing that there is a qualitative change in the asymptotics of the probability as we move from the large deviation regime to the moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sodin, Zeroes of Gaussian analytic functions European Congress of Mathematics, Stockholm, June 27–July 2 (2004).

  2. M. Sodin and B. Tsirelson, Random complex zeroes. I. Asymptotic normality. Israel J. Math. 144:125–149 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Sodin, Zeroes of Gaussian analytic functions. Math. Res. Lett 7(4):371–381 (2000).

    MATH  MathSciNet  Google Scholar 

  4. B. Jancovici, J. L. Lebowitz and G. Manificat, Large charge fluctuations in classical Coulomb systems. J. Statist. Phys. 72:773–787 (1993).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. M. Sodin and B. Tsirelson, Random Complex Zeroes. III. Decay of the hole probability. Israel J. Math. 147:371–379 (2005).

    MathSciNet  MATH  Google Scholar 

  6. A. Soshnikov, Determinantal random point fields. Russian Math. Surveys 55:923–975 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Hough, M. Krishnapur, Y. Peres and B. Virág, Determinantal Processes and Independence. Probab. Surv. 3:206–229 (2006).

    Article  MathSciNet  Google Scholar 

  8. J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys. 6:440–449 (1965).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. M. R. Dennis and J. H. Hannay, Saddle points in the chaotic analytic function and Ginibre characteristic polynomial. J. Phys. A 12:3379–3383 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. E. Kostlan, On the spectra of Gaussian matrices. Linear Algebra Appl. 162/164:385–388 (1992).

    Article  MathSciNet  Google Scholar 

  11. Y. Peres and B. Virág, Zeros of i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Mathematica 194:1–35 (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunath Krishnapur.

Additional information

Research supported by NSF grant #DMS-0104073 and NSF-FRG grant #DMS-0244479.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnapur, M. Overcrowding estimates for zeroes of Planar and Hyperbolic Gaussian analytic functions. J Stat Phys 124, 1399–1423 (2006). https://doi.org/10.1007/s10955-006-9159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9159-y

Keywords

Navigation