Skip to main content
Log in

Properties of Atypical Graphs from Negative Complexities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The one-step replica symmetry breaking cavity method is proposed as a new tool to investigate large deviations in random graph ensembles. The procedure hinges on a general connection between negative complexities and probabilities of rare samples in spin glass like models. This relation between large deviations and replica theory is explicited on different models where it is confronted to direct combinatorial calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Mézard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory and Beyond, Vol. 9 of Lecture Notes in Physics(World Scientific, Singapore, 1987).

  2. M. Talagrand. Spin Glasses: A Challenge for Mathematicians (Springer, 2003).

  3. M. Mézard and G. Parisi, The Bethe lattice spin glass revisited, Eur.Phys.J.B 20:217, (2001).

    Google Scholar 

  4. M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random satisfiability problems, Science 297:812–815 (2002).

    Google Scholar 

  5. D. J. Aldous, The zeta(2) limit in the random assignment problem, Random Structures and Algorithms 18(4):381–418, (2001).

    Google Scholar 

  6. B. Bollobás, Random graphs, 2nd ed. (Cambridge University Press, 2001).

  7. E. Friedgut and G. Kalai, Every monotone property has a sharp threshold, Proc.Amer.Math.Soc. 124:2993–3002, (1996).

    Google Scholar 

  8. B. Derrida, Random-energy model: An exactly solvable model of disordered systems, Phys.Rev.B 24:2613–2626 (1981).

    Google Scholar 

  9. G. Biroli and M. Mézard, Lattice glass models, Phys.Rev.Lett. 88:025501 (2002).

    Google Scholar 

  10. A. Engel, R. Monasson, and A. K. Hartmann, On large deviation properties of Erdöos-Rényi random graphs cond-mat/0311535 (2003).

  11. P. Erdöos and A. Rényi, On the evolution of random graphs, Publ.Math.Inst.Hungar.Acad.Sci. 5:17–61 (1960).

    Google Scholar 

  12. A. Réka and A.-L. Barabási, Statistical mechanics of complex networks, Rev.Mod.Phys. 74:47 (2002).

    Google Scholar 

  13. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distribution and their applications, Phys.Rev.E 64:026118 (2001).

    Google Scholar 

  14. N. C. Wormald, Models of random regular graphs, In J. D. Lamb and D. A. Preece, editors, Survey in Combinatorics, volume 276 of Mathematical Society Lecture Note Series, pp. 239–298, Cambridge University Press (1999).

  15. R. J. Baxter, Exactly solved models in statistical mechanics(Academic Press, 1982).

  16. O. Rivoire, G. Biroli, O. C. Martin, and M. Mézard, Glass models on Bethe lattices, Eur.Phys.J.B 37:55–78, (2004).

    Google Scholar 

  17. M. Mézard and G. Parisi, Mean-field theory of randomly frustrated systems with finite connectivity, Europhys.Lett. 3:1067–1074 (1987).

    Google Scholar 

  18. M. Mézard and G. Parisi, The cavity method at zero temperature, J.Stat.Phys. 111:1–34 (2003).

    Google Scholar 

  19. R. Monasson, Structural glass transition and the entropy of the metastable states, Phys.Rev.Lett. 75:2847 (1995).

    Google Scholar 

  20. D. J. Gross and M. Mézard, The simplest spin glass, Nucl.Phys.B 240:431 (1984).

    Google Scholar 

  21. A. Andreanov, F. Barbieri, and O. C. Martin, Large deviations in spin glass ground state energies, cond-mat/0307709 (2003).

  22. M. Weigt and A. K. Hartmann, Minimal vertex covers on finite-connectivity random graphs: A hard-sphere lattice-gas picture, Phys.Rev.E 63:056127 (2001).

    Google Scholar 

  23. M. Weigt and A. K. Hartmann, Statistical mechanics of the vertex-cover problem. J.Phys.A 43:11069–11093.

  24. H. Zhou, Vertex cover problem studied by cavity method: Analytics and population dynamics, Eur.Phys.J.B 32:265–270 (2003).

    Google Scholar 

  25. P. E. O'Neil, Asymptotics and random matrices with row-sum and column-sum restrictions, Bull.Am.Math.Soc. 75:1276–1282 (1969).

    Google Scholar 

  26. A. Vasquez and M. Weigt, Computational complexity arising from degree correlations in networks, Phys.Rev.E 67:027101 (2003).

    Google Scholar 

  27. M. Weigt and A. K. Hartmann, Glassy behavior induced by geometrical frustration in a hard-core lattice gas model, Europhys.Lett. 62:533–539, (2003).

    Google Scholar 

  28. A. Montanari and F. Ricci-Tersenghi, On the nature of the low-temperature phase in discontinuous mean-field spin glasses, Eur.Phys.J.B 33:339 (2003).

    Google Scholar 

  29. M. Mézard and R. Zecchina, Random K-satisfiability problem: From an analytic solution to an efficient algorithm, Phys.Rev.E 66:056126 (2002).

    Google Scholar 

  30. R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Coloring random graphs, Phys.Rev.Lett. 89:268701 (2002).

    Google Scholar 

  31. R. S. Ellis, Entropy, large deviations, and statistical mechanics(Springer-Verlag, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoire, O. Properties of Atypical Graphs from Negative Complexities. Journal of Statistical Physics 117, 453–476 (2004). https://doi.org/10.1007/s10955-004-2265-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-2265-9

Navigation