Skip to main content
Log in

Formation of 1-Butyl-3-methylimidazolium Bis(2-ethyl-1-hexyl)sulfosuccinate Stabilized Water-in-1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Microemulsion and the Effects of Additives

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new strategy is proposed here to formulate a bis(2-ethyl-1-hexyl)sulfosuccinate (AOT) stabilized water-in-ionic liquid microemulsion without any additives. Replacing the inorganic counter ion Na+ by the organic 1-butyl-3-methylimidazolium ([Bmim]+) ion greatly improves the solubility of AOT in hydrophobic 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim]Tf2N) (IL) and favors the formation of water-in-IL (W/IL) microdroplets. The existence of the W/IL microdroplets has been confirmed by dynamic light scattering, Fourier transform infrared absorption spectroscopy and ultraviolet–visible absorption spectroscopy. Also, presented for the first time are the effects of salts and alcohols on the microstructure and water solubilization capacity of the ternary H2O/[Bmim]AOT/[Bmim]Tf2N system. For inorganic salts, larger concentrations of the salt and higher charge density of the cation result in smaller microdroplet size and weak water solubilization capacity. For 1-hexanol, a high concentration of this alcohol results in small microdroplet size but high water solubilization capacity. Analyses indicate that the salts compress the electric double layers of W/IL microemulsions, decrease the size of the microdroplets and consequently reduce the water solubilization capacity; the alcohol, however, facilitates the aggregation of AOT, increases the number of W/IL microdroplets, and therefore improves the water solubilization capacity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yu, X.X., Li, Q., Wang, M.M., Du, N., Huang, X.R.: Study on the catalytic performance of laccase in the hydrophobic ionic liquid-based bicontinuous microemulsion stabilized by polyoxyethylene-type nonionic surfactants. Soft Matt. 12, 1713–1720 (2016)

    Article  CAS  Google Scholar 

  2. Xu, J., Zhang, L., Yin, A.L., Hou, W.G., Yang, Y.: Nonaqueous ionic liquid microemulsions of 1-butyl-3-methylimidazolium tetrafluoroborate, toluene and ethanol. Soft Matt. 9, 6497–6504 (2013)

    Article  CAS  Google Scholar 

  3. Cai, H.L., An, X.Q., Liu, B., Qiao, Q.A., Shen, W.G.: Critical behavior of DMA + AOT + n-octane nonaqueous microemulsion with the molar ratio (ω = 2.66) of DMA to AOT. J. Solution Chem. 39, 718–726 (2010)

    Article  CAS  Google Scholar 

  4. Chai, J.L., Wu, Y.T., Li, X.Q., Yang, B., Lu, J.J.: Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecylsulfate. J. Solution Chem. 40, 1889–1898 (2011)

    Article  CAS  Google Scholar 

  5. Fanun, M.: Microemulsions as delivery systems. Curr. Opin. Colloid Interface Sci. 17, 306–313 (2012)

    Article  CAS  Google Scholar 

  6. Wang, X.G., Chen, H.M., Luo, Z.G., Fu, X.: Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohyd. Polym. 138, 192–200 (2016)

    Article  CAS  Google Scholar 

  7. Schwarze, M., Pogrzeba, T., Volovych, I., Schomaecker, R.: Microemulsion systems for catalytic reactions and processes. Catal. Sci. Technol. 46, 24–33 (2014)

    Google Scholar 

  8. Yu, X.X., Sun, Y.W., Xue, L.Y., Huang, X.R., Qu, Y.B.: Strategies for improving the catalytic performance of an enzyme in ionic liquids. Top. Catal. 57, 923–934 (2014)

    Article  CAS  Google Scholar 

  9. Yang, Y., Jin, J., Wang, J.S., Shi, Z., Zhang, S.H.: Kinetics of a hydrolysis reaction in an oil/water microemulsion system near the critical point. J. Solution Chem. 45, 702–711 (2016)

    Article  CAS  Google Scholar 

  10. Wang, X.G., Cheng, J.H., Ji, G.Y., Peng, X.C., Luo, Z.G.: Starch nanoparticles prepared in a two ionic liquid based microemulsion system and their drug loading and release properties. RSC Adv. 6, 4751–4757 (2016)

    Article  CAS  Google Scholar 

  11. Zhou, Z., He, D.L., Guo, Y.N., Cui, Z.D., Wang, M.H., Li, G.X., Yang, R.H.: Fabrication of polyaniline–silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films 517, 6767–6771 (2009)

    Article  CAS  Google Scholar 

  12. Wang, J.S., Shah, Z.H., Zhang, S.F., Lu, R.W.: Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6, 4418–4437 (2014)

    Article  CAS  Google Scholar 

  13. Mao, Q.X., Wang, H., Shu, Y., Chen, X.W., Wang, J.H.: A dual-ionic liquid microemulsion system for the selective isolation of hemoglobin. RSC Adv. 4, 8177–8182 (2014)

    Article  CAS  Google Scholar 

  14. Gao, Y.N., Han, S.B., Han, B.X., Li, G.Z., Shen, D., Li, Z.H., Du, J.M., Hou, W.G., Zhang, G.Z.: TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions. Langmuir 21, 5681–5684 (2005)

    Article  CAS  Google Scholar 

  15. Gao, Y.A., Li, N., Zheng, L.Q., Zhao, X.Y., Zhang, S.H., Han, B.X., Hou, W.G., Li, G.Z.: A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV–Vis spectroscopy. Green Chem. 8, 43–49 (2006)

    Article  CAS  Google Scholar 

  16. Moniruzzaman, M., Kamiya, N., Nakashima, K., Goto, M.: Formation of reverse micelles in a room-temperature ionic liquid. Chem. Phys. Chem. 9, 689–692 (2008)

    Article  CAS  Google Scholar 

  17. Wang, T.F., Peng, C.J., Liu, H.L., Hu, Y.: Phase behavior and microstructure of the system consisting of 1-butyl-3-methylimidazolium hexafluorophosphate, water, triblock copolymer F127 and short-chain alcohols. J. Mol. Liq. 146, 89–94 (2009)

    Article  CAS  Google Scholar 

  18. Xue, L.Y., Qiu, H.J., Li, Y., Lu, L., Huang, X.R., Qu, Y.B.: A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase. Colloids Surf. B 82, 432–437 (2011)

    Article  CAS  Google Scholar 

  19. Rai, R., Pandey, S., Baker, S.N., Vora, S., Behera, K., Baker, G.A., Pandey, S.: Ethanol-assisted, few nanometer, water-in-ionic-liquid reverse micelle formation by a zwitterionic surfactant. Chem. Eur. J. 18, 12213–12217 (2012)

    Article  CAS  Google Scholar 

  20. Wang, M.M., Du, N., Zhong, Y.H., Huang, X.R.: Additive effects on the phase behavior of cationic surfactant ([C16mim]Br) stabilized hydrophobic ionic liquid based middle-phase microemulsions. J. Chem. Eng. Data 62, 878–884 (2017)

    Article  CAS  Google Scholar 

  21. Sun, Y.W., Yan, K.Q., Huang, X.R.: Formation, characterization and enzyme activity in water-in-hydrophobic ionic liquid microemulsion stabilized by mixed cationic/nonionic surfactants. Colloids Surf. B 122, 66–71 (2014)

    Article  CAS  Google Scholar 

  22. Yan, K.Q., Sun, Y.W., Huang, X.R.: Effect of the alkyl chain length of a hydrophobic ionic liquid (IL) as an oil phase on the phase behavior and the microstructure of H2O/IL/nonionic polyoxyethylene surfactant ternary systems. RSC Adv. 4, 32363–32370 (2014)

    Article  CAS  Google Scholar 

  23. Rai, R., Pandey, S.: Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant Brij-35. Langmuir 30, 10156–10160 (2014)

    Article  CAS  Google Scholar 

  24. Kusano, T., Fujii, K., Hashimoto, K., Shibayama, M.: Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids. Langmuir 30, 11890–11896 (2014)

    Article  CAS  Google Scholar 

  25. Safavi, A., Maleki, N., Farjami, F.: Phase behavior and characterization of ionic liquids based microemulsions. Colloids Surf. A 355, 61–66 (2010)

    Article  CAS  Google Scholar 

  26. Fletcher, K.A., Pandey, S.: Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Langmuir 20, 33–36 (2004)

    Article  CAS  Google Scholar 

  27. Rao, K.S., Gehlot, P.S., Trivedi, T.J., Kumar, A.: Self-assembly of new surface active ionic liquids based on aerosol-OT in aqueous media. J. Colloid Interface Sci. 428, 267–275 (2014)

    Article  Google Scholar 

  28. Cheng, N., Ma, X.Y., Sheng, X., Wang, T., Wang, R., Jiao, J.J., Yu, L.: Aggregation behavior of anionic surface active ionic liquids with double hydrocarbon chains in aqueous solution: experimental and theoretical investigations. Colloids Surf. A 453, 53–61 (2014)

    Article  CAS  Google Scholar 

  29. Inoue, T., Ebina, H., Dong, B., Zheng, L.Q.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007)

    Article  CAS  Google Scholar 

  30. Kundu, K., Paul, B.K.: Physicochemical investigation of mixed surfactant reverse micelles: water solubilization and conductometric studies. Colloids Surf. A 433, 154–165 (2013)

    Article  CAS  Google Scholar 

  31. Onuki, A., Okamoto, R., Araki, T.: Phase transitions in soft matter induced by selective solvation. Bull. Chem. Soc. Jpn 84, 569–587 (2011)

    Article  CAS  Google Scholar 

  32. Li, N., Gao, Y.A., Zheng, L.Q., Jin, Z., Li, Y., Li, X.W.: Studies on the micropolarities of bmimBF4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV–Visible spectroscopy. Langmuir 23, 1091–1097 (2007)

    Article  CAS  Google Scholar 

  33. Chen, V., Evans, D.F., Ninham, B.W.: Counterion and co-ion specificity in ionic microemulsions. J. Phys. Chem. 91, 1823–1826 (1987)

    Article  CAS  Google Scholar 

  34. Liu, J.X., Zhang, X.G., Zhang, H.J.: Water/AOT/IPM/alcohol reverse microemulsions: influence of salts and nonionic surfactants on structure and percolation behavior. J. Chem. Thermodyn. 72, 1–8 (2014)

    Article  CAS  Google Scholar 

  35. Chai, J.L., Zhao, J.R., Gao, Y.H., Yang, X.D., Wu, C.J.: Studies on the phase behavior of the microemulsions formed by sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecyl benzene sulfonate with a novel fishlike phase diagram. Colloids Surf. A 302, 31–35 (2007)

    Article  CAS  Google Scholar 

  36. Liu, Z.C., Chai, J.L., Chai, Z.Q., Liu, N.N., Chai, H.H., Zhang, H.M.: Interfacial composition, solubility, and solubilization capacity of microemulsions containing cationic gemini and anionic surfactants. J. Chem. Eng. Data 59, 2230–2234 (2014)

    Article  CAS  Google Scholar 

  37. Abbasi, S., Radi, M.: Food grade microemulsion systems: canola oil/lecithin:n-propanol/water. Food Chem. 194, 972–979 (2016)

    Article  CAS  Google Scholar 

  38. Leung, R., Shah, D.O.: Solubilization and phase equilibria of water-in-oil microemulsions: II. Effects of alcohols, oils, and salinity on single-chain surfactant systems. Colloid. Interface Sci. 120, 330–344 (1987)

    Article  Google Scholar 

  39. Wang, W., Weber, M.E., Vera, J.H.: Effect of alcohol and salt on water uptake of reverse micelles formed by dioctyldimethyl ammonium chloride (DODMAC) in isooctane. J. Colloid Interface Sci. 168, 422–427 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Fundamental Research Funds of Shandong University (2015CJ005), the Provincial Key R & D Project of Shandong (2015GSF121035) and the National Natural Science Foundation of China (21173133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Huang, X. Formation of 1-Butyl-3-methylimidazolium Bis(2-ethyl-1-hexyl)sulfosuccinate Stabilized Water-in-1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Microemulsion and the Effects of Additives. J Solution Chem 46, 1792–1804 (2017). https://doi.org/10.1007/s10953-017-0632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0632-9

Keywords

Navigation