Skip to main content

Advertisement

Log in

The Cloud Point Behavior and Liquid–Liquid Equilibrium of Poly(Ethylene Glycol)–Block-Poly(Propylene Glycol)–Block-Poly(Ethylene Glycol) with Five Salting-Out Salts (K2SO4, K2CO3, KCl, KNO3, KBr) at 283.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The cloud points (CP) of aqueous solutions of two triblock copolymers, poly(ethylene glycol)–block-poly(propylene glycol)–block-poly(ethylene glycol), L31 (M n  = 1100 g·mol−1) and L61 (M n  = 2100 g·mol−1) were determined in the absence and presence of five salting out salts (K2SO4, K2CO3, KCl, KNO3, KBr) at different concentrations, and the liquid–liquid equilibrium (LLE) data for L31/L61–K2SO4/K2CO3/KCl/KNO3/KBr ATPSs were measured at 283.15 K. The results show that the addition of these salts decreases the CP of aqueous copolymer solutions and the copolymer with the higher molecular weight has a lower CP. The order in which salts depress the CP is as follows: \( {\text{K}}_{2} {\text{SO}}_{4} > {\text{K}}_{2} {\text{CO}}_{3} > {\text{KCl}} > {\text{KNO}}_{3} > {\text{KBr}} \). When the concentration of salt is the same, the anion order to depress the CP is as follows: \( {\text{SO}}_{4}^{2 - } > {\text{CO}}_{3}^{2 - } \), \( {\text{Cl}}^{ - } > {\text{NO}}_{3}^{ - } > {\text{Br}}^{ - } \). The abilities of the salt and anion to induce phase separations are in accord with their ability to reduce the CP. The results also show that the copolymer with the higher molecular weight phase separates more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albertsson, P.A.: Partition of Cell Particles and Macromolecules, 3rd edn. Wiley, New York (1986)

    Google Scholar 

  2. Mageste, A.B., de Lemos, L.R., Ferreira, G.M.D., da Silva, M.C.H., da Silva, L.H.M., Bonomo, R.C.F., Minim, L.A.: Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine. J. Chromatogr. A 1216, 7623–7629 (2009)

    Article  CAS  Google Scholar 

  3. Naganagouda, K., Mulimani, V.H.: Aqueous two-phase extraction (ATPE): an attractive and economically viable technology for downstream processing of Aspergillus oryzae R–galactosidase. J. Process Biochem. 43, 1293–1299 (2008)

    Article  CAS  Google Scholar 

  4. Oliveira, M.C., Filho, M.A.N.A., Filho, P.A.P.: Phase equilibrium and protein partitioning in aqueous two-phase systems containing ammonium carbamate and block copolymers PEO–PPO–PEO. Biochem. Eng. J. 37, 311–318 (2007)

    Article  Google Scholar 

  5. Rodrigues, G.D., de Lemos, L.R., da Silva, L.H.M., da Silva, M.C.H., Minim, L.A., Coimbra, J.S.R.: A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. Talanta 80, 1139–1144 (2010)

    Article  CAS  Google Scholar 

  6. Mageste, A.B., de Lemos, L.R., Ferreira, G.M.D., da Silva, M.C.H., da Silva, L.H.M., Bonomo, R.C.F., Minim, L.A.: Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine. J. Chromatogr. A 1216, 7623–7629 (2009)

    Article  CAS  Google Scholar 

  7. Jacinto, M.J., Soares, R.R.G., Azevedo, A.M., Chu, V., Tover, A., Conde, J.P., Aires-Barros, M.R.: Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. J. Sep. Purif. Technol. 154, 27–35 (2015)

    Article  CAS  Google Scholar 

  8. Santesoon, S., Ramirez, I.B.R., Viberg, P., Jergil, B., Nilsson, S.: Affinity two-phase partitioning in acoustically levitated drops. J. Anal. Chem. 76, 303–308 (2004)

    Article  Google Scholar 

  9. Frerix, A., Schonewald, M., Geilenkirchen, P., Muller, M., Kula, M.R.: Exploitation of the coil–globule plasmid DNA transition induced by small changes in temperature, pH, salt, and poly(ethylene glycol) compositions for directed partitioning in aqueous two-phase systems. Langmuir 22, 4282–4290 (2006)

    Article  CAS  Google Scholar 

  10. Everberg, H., Clough, J., Henderson, P., Jergil, B., Tjerneld, F., Ramirez, I.B.R.: Isolation of Escherichia coli inner membranes by metal affinity two-phase partitioning. J. Chromatogr. A 1118, 244–252 (2006)

    Article  CAS  Google Scholar 

  11. Alejandro, N., Ling, T.C., Lyddiatt, A.: Aqueous two-phase recovery of bio–nanoparticles: a miniaturization study for the recovery of bacteriophage T4. J. Chromatogr. B 854, 13–19 (2007)

    Article  Google Scholar 

  12. Khavarpour, M., Tabandeh, F., Jahanshahi, M., Khodabandeh, M., Danesh, H.A.: ATPS as an efficient method for separation of bionanoparticles: investigation and optimization of partition behavior of pDNA. J. Chem. Biochem. Eng. Q. 23, 351–357 (2009)

    CAS  Google Scholar 

  13. Azevedo, A.M., Gomes, A.G., Rosa, P.A.J., Ferreira, I.F., Pisco, A.M.M.O., Aires-Barros, M.R.: Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two–phase systems. J. Sep. Purif. Technol. 65, 14–21 (2009)

    Article  CAS  Google Scholar 

  14. Madeira, P.P., Teixeira, J.A., Macedo, E.A., Mikheeva, L.M., Zaslavsky, B.Y.: Correlations between distribution coefficients of various biomolecules in different polymer/polymer aqueous two-phase systems. J. Fluid Phase Equilibr. 267, 150–157 (2008)

    Article  CAS  Google Scholar 

  15. da Silva, L.H.M., da Silva, M.C.H., Francisco, K.R., Cardoso, M.V.C., Minim, L.A., Coimbra, J.S.R.: PEO–(M(CN)5NO) x –(M = Fe, Mn or Cr) Interaction as driving force in the partitioning of the pentacyanonitrosylmetallate anion in ATPS: the strong effect of the central atom. J. Phys. Chem. B 112, 11669–11678 (2008)

    Article  Google Scholar 

  16. da Silva, L.H.M., da Silva, M.C.H., de Aquino, R.A.N., Francisco, K.R., Cardoso, M.V.C., Minim, L.A., Coimbra, J.S.R.: Nitroprusside–PEO enthalpic interaction as driving force for partitioning of the (Fe(CN)5NO)2–anion in aqueous two–phase systems formed by poly(ethylene oxide) and sulfate salts. J. Phys. Chem. B 110, 23540–23546 (2006)

    Article  Google Scholar 

  17. da Silva, L.H.M., da Silva, M.C.H., Amim Jr., J., Martins, J.P., Coimbra, J.S.R., Minim, L.A.: Hydrophobic effect on the partitioning of (Fe(CN)5NO)2–anion and (Fe(CN)6)3–anions in aqueous two–phase systems formed by triblock copolymers and phosphate salts. J. Sep. Purif. Technol. 60, 103–112 (2008)

    Article  Google Scholar 

  18. da Silva, M.D.H., da Silva, L.H.M., Paggioli, F.J., Coimbra, J.S.R., Minim, L.A.: Sistema aquoso bifasico: uma alternativa eficiente para a extracao de ions. J. Quím. NoVa 29, 1332–1339 (2006)

    Article  Google Scholar 

  19. Lacerda, V.G., Mageste, A.B., Santos, I.J.B., da Silva, L.H.M., da Silva, M.C.H.: Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J. Power Sour. 193, 908–913 (2009)

    Article  CAS  Google Scholar 

  20. da Silva, M.D.H., da Silva, L.H.M., Amim Jr., J., Guimaraes, R.O., Martins, J.P.: Liquid–liquid equilibrium of aqueous mixture of triblock copolymers L35 and F68 with Na2SO4, Li2SO4, or MgSO4. J. Chem. Eng. Data 51, 2260–2264 (2006)

    Article  Google Scholar 

  21. Lo, S.C., Ramanan, R.N., Tey, B.T., Ling, T.C., Show, P.L., Ooi, C.W.: Classification of pressure range based on the characterization of Escherichia coli cell disruption in high pressure homogenizer. J. Chem. Eng. Data 60, 2848–2857 (2015)

    Article  CAS  Google Scholar 

  22. de Andrade, V.M., Rodrigues, G.D., de Carvalho, R.M.M., da Silva, L.H.M., da Silva, M.C.H.: Aqueous two-phase systems of copolymer L64 + organic salt + water: enthalpic L64–salt interaction and Othmer-Tobias, NRTL and UNIFAC thermodynamic modeling. Chem. Eng. J. 171, 9–15 (2011)

    Article  Google Scholar 

  23. Martins, J.P., Mageste, A.B., da Silva, M.D.H., da Silva, L.H.M., Patrício, P.D., Coimbra, J.S.D., Minim, L.A.: Liquid–liquid equilibria of an aqueous two-phase system formed by a triblock copolymer and sodium salts at different temperatures. J. Chem. Eng. Data 54, 2891–2894 (2009)

    Article  CAS  Google Scholar 

  24. Rodrigues, G.D., da Silva, M.D.H., da Silva, L.H.M., Teixeira, L.S., de Andrade, V.M.: Liquid–liquid phase equilibrium of triblock copolymer L64, poly(ethylene oxide–b–propylene oxide–b–ethylene oxide), with sulfate salts from (278.15 to 298.15) K. J. Chem. Eng. Data 54, 1894–1898 (2009)

    Article  Google Scholar 

  25. Hui, S.N., Tan, C.P., Mokhtar, M.N., Ibrahim, S., Ariff, A., Ooi, C.W., Ling, T.C.: Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two–phase system using thermo-separating polymer. J. Sep. Purif. Technol. 89, 9–15 (2012)

    Article  Google Scholar 

  26. da Silva, L.H.M., da Silva, M.D.H., Mesquita, A.F., Nascimento, K.S., Coimbra, J.S.R., Minim, L.A.: Equilibrium phase behavior of triblock copolymer + salt + water two-phase systems at different temperatures and pH. J. Chem. Eng. Data 50, 1457–1461 (2005)

    Article  Google Scholar 

  27. Rodrigues, G.D., da Silva, M.D.H., da Silva, L.H.M., Paggiolli, F.J., Minim, L.A., Coimbra, J.S.R.: Liquid–liquid extraction of metal ions without use of organic solvent. J. Sep. Purif. Technol. 62, 687–693 (2008)

    Article  CAS  Google Scholar 

  28. de Lemos, L.R., Santos, I.J.B., Rodrigues, G.D., Ferreira, G.M.D., da Silva, L.H.M., da Silva, M.D.H., de Carvalho, R.M.M.: Phase compositions of aqueous two-phase systems formed by L35 and salts at different temperatures. J. Chem. Eng. Data 55, 1193–1199 (2010)

    Article  Google Scholar 

  29. Santos-Ebinuma, V.C., Lopes, A.M., Converti, A., Pessoa, A., Rangel-Yagui, C.D.: Behavior of Triton X–114 cloud point in the presence of inorganic electrolytes. J. Fluid Phase Equilibr. 360, 435–438 (2013)

    Article  CAS  Google Scholar 

  30. Rodrigues, G.D., Teixeira, L.D., Ferreira, G.M.D., da Silva, M.D.H., da Silva, L.H.M., de Carvalho, R.M.M.: Phase diagrams of aqueous two-phase systems with organic salts and F68 triblock copolymer at different temperatures. J. Chem. Eng. Data 55, 1158–1165 (2010)

    Article  Google Scholar 

  31. Blankschtein, D., Thurston, G.M., Benedek, G.B.: Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. J. Chem. Phys. 85, 7268–7288 (1986)

    Article  CAS  Google Scholar 

  32. Virtuoso, L.S., Silva, L.M.D.S., Malaquias, B.S., Vello, K.A.S.F., Cindra, C.P.R., da Silva, L.H.M., Mesquita, A.F., da Silva, M.C.H., de Carvalho, R.M.M.: Equilibrium phase behavior of triblock copolymer + sodium or + potassium hydroxides + water two-phase systems at different temperatures. J. Chem. Eng. Data 55, 3847–3852 (2010)

    Article  CAS  Google Scholar 

  33. Akbas, H., Batıgőҫ, C.: Spectrometric studies on the cloud points of Triton X–405. J. Fluid Phase Equilibr. 279, 115–119 (2009)

    Article  CAS  Google Scholar 

  34. Rocha, S.A.N., Costa, C.R., Celino, J.J., Teixeira, L.S.G.: Effect of additives on the cloud point of the octylphenol ethoxylate (30EO) nonionic surfactant. J. Surfact. Deterg. 16, 299–303 (2013)

    Article  CAS  Google Scholar 

  35. Zafarani-Moattar, M.T., Hamzehzadeh, S.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate. J. Calphad. 29, 1–6 (2005)

    Article  CAS  Google Scholar 

  36. Xie, X., Han, J., Wang, Y., Yan, Y.S., Guowu, Y., Weisheng, G.: Measurement and correlation of the phase diagram data for PPG400 + (K3PO4, K2CO3, and K2HPO4) + H2O aqueous two-phase systems at T = 298.15 K. J. Chem. Eng. Data 55, 4741–4745 (2010)

    Article  CAS  Google Scholar 

  37. Yang, Y.Y., Soppimath, K.: Novel temperature and pH sensitive copolymers. US Patent 20050277739, 15 Dec 2012.

  38. Othmer, D.F., Tobias, P.E.: Liquid–liquid extraction data—Toluene and acetaldehyde systems. J. Ind. Eng. Chem. 34, 693–696 (1942)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31470434, 21406090, 21407058 and 21576124), the Grants from the project of General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (No. 2015IK139), Zhenjiang Social Development Project (SH2015014), and the Graduate Practice and Innovation Projects of the Higher Learning Institutes of Jiangsu Province in 2015 (SJLX15_0505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Zhang, W., Han, J. et al. The Cloud Point Behavior and Liquid–Liquid Equilibrium of Poly(Ethylene Glycol)–Block-Poly(Propylene Glycol)–Block-Poly(Ethylene Glycol) with Five Salting-Out Salts (K2SO4, K2CO3, KCl, KNO3, KBr) at 283.15 K. J Solution Chem 45, 1811–1825 (2016). https://doi.org/10.1007/s10953-016-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0534-2

Keywords

Navigation