Skip to main content
Log in

Prediction of Heat Capacities of Hydration of Various Organic Compounds Using Partial Least Squares and Artificial Neural Network

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A quantitative structure–property relationship study based on artificial neural network (ANN) was carried out for the prediction of the heat capacities of hydration of a set of 289 organic compounds of very different chemical natures. The genetic algorithm-partial least squares (GA-PLS) method was applied as a variable selection tool. A PLS method was used to select the best descriptors, and the selected descriptors were then used as input neurons in a neural network model. These descriptors are: number of H atoms (NHA), maximum partial charge in the molecule (Q max), atomic charge weighted PPSA (PPSA3), relative positive charge (RPCG), minimum net atomic charge (Q min), fractional PPSA (FPSA3), and Randic index (order 1) (1 χ). The results obtained show the ability of the developed artificial neural network model to predict heat capacities of hydration of various organic compounds. Also, the results reveal the superiority of the ANN over the PLS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Subramanian, S., Ahluwalia, J.C.: Standard partial molal heat capacities of sodium tetraphenylboron in aqueous solution from 0 to 90°. Effect of water structure and hydrophobic hydration. J. Phys. Chem. 72, 2525–2531 (1968)

    Article  CAS  Google Scholar 

  2. Sarma, T.S., Ahluwalia, J.C.: Excess partial molal heat capacities of Bu4NBr in water from 4 to 70°C and the effect on the water structure. J. Chem. Soc. 67, 2528–2531 (1971)

    CAS  Google Scholar 

  3. Mohanty, R.K., Sunder, S., Ahluwalia, J.C.: Excess partial molal heat capacities of n-tetraamyl ammonium bromide in water from 10 to 80° and in aqueous tert-butyl alcohol solvent system at 30° and the effects on the water structure. J. Phys. Chem. 76, 2577–2581 (1972)

    Article  CAS  Google Scholar 

  4. Levine, A.S., Wood, R.H.: Enthalpies of dilution of tetra-n-alkylammonium bromides in water and heavy water. J. Phys. Chem. 77, 2390–2398 (1973)

    Article  CAS  Google Scholar 

  5. Manin, N.G., Kustov, A.V., Korolev, V.P.: Thermodynamics of aqueous solutions of Bu4NBr in wide concentration and temperature ranges. Zh. Neorg. Khim. 50(1), 135–141 (2005)

    Google Scholar 

  6. Liu, S., Cai, S., Cao, C., Li, Z.: Molecular electronegative distance vector (MEDV) related to 15 properties of alkanes. J. Chem. Inf. Comput. Sci. 40, 1337–1348 (2000)

    Article  CAS  Google Scholar 

  7. Yao, X.J., Fan, B., Doucet, J.P., Panaye, A., Liu, M., Zhang, R., Zhang, X., Hu, Z.: Quantitative structure property relationship models for the prediction of liquid heat capacity. QSAR Comb. Sci. 22, 29–48 (2003)

    Article  CAS  Google Scholar 

  8. Ivanova, A.A., Palyulin, V.A., Zefirov, A.N., Zefirov, N.S.: Fragment descriptors in QSPR: application to heat capacity calculation. J. Org. Chem. 40, 644–649 (2004)

    CAS  Google Scholar 

  9. Dyekjær, J.D., Jonsdottir, S.O.: QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations. Carbohydr. Res. 339, 269–280 (2004)

    Article  Google Scholar 

  10. Ashrafi, F., Saadati, R., Behboodi Amlashi, A.: Modeling and theoretical calculation of liquid heat capacity of alcohols and aldehydes using QSPR. Afr. J. Pure Appl. Chem. 2(11), 116–120 (2008)

    Google Scholar 

  11. Vegas, J.M., Zufiria, P.J.: Generalized neural network for spectral analysis: dynamics and Liapunov functions. Neural Netw. 17, 233–245 (2004)

    Article  Google Scholar 

  12. Schweitzer, R.C., Morris, J.B.: The development of a quantitative structure property relationship (QSPR) for the prediction of dielectric constants using neural networks. Anal. Chem. Acta 384, 285–303 (1999)

    Article  CAS  Google Scholar 

  13. Tong, C.S., Cheng, K.C.: Mass spectral search method using the neural network approach. Chem. Intell. Lab. Sys. 49, 135–150 (1999)

    Article  CAS  Google Scholar 

  14. Lui, F., Liang, Y., Cao, C.: QSPR modeling of thermal conductivity detection response factors for diverse organic compound. Chem. Intell. Lab. Sys. 81, 120–126 (2006)

    Article  Google Scholar 

  15. Golmohammadi, H., Fatemi, M.H.: Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography. Electrophoresis 26, 3438–3444 (2005)

    Article  CAS  Google Scholar 

  16. Baher, E., Fatemi, M.H., Konoz, E., Golmohammadi, H.: Prediction of retention factors in micellar electrokinetic chromatography from theoretically derived molecular descriptors. Microchim. Acta 158, 117–122 (2007)

    Article  CAS  Google Scholar 

  17. Konoz, E., Golmohammadi, H.: Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network. Anal. Chem. Acta 619, 157–164 (2008)

    Article  CAS  Google Scholar 

  18. Fatemi, M.H.: Simultaneous modeling of the Kovats retention indices on OV-1 and SE-54 stationary phases using artificial neural networks. J. Chromatogr. A 955, 273–280 (2002)

    Article  CAS  Google Scholar 

  19. Gakh, A.A., Gakh, E.G., Sumpter, B.G., Noid, D.W.: Neural network-graph theory approach to the prediction of the physical properties of organic compounds. J. Chem. Inf. Comput. Sci. 34, 832–839 (1994)

    Article  CAS  Google Scholar 

  20. Habibi-Yangjeh, A., Esmailian, M.: Prediction partial molar heat capacity at infinite dilution for aqueous solutions of various polar aromatic compounds over a wide range of conditions using artificial neural networks. Bull. Korean Chem. Soc. 28, 1477–1484 (2007)

    Article  CAS  Google Scholar 

  21. Abraham, M.H., Acree Jr, W.E.: Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration. J. Fluid Phase Equilibr. 262, 97–110 (2007)

    Article  CAS  Google Scholar 

  22. Hyperchem, rev. 4 for Windows. Autodesk, Sansalito, CA (1995)

  23. Stewart, J.J.P.: Semiempirical Molecular Orbital Program, QCPE, 445, Version 6 (1990)

  24. Katritzky, A.R., Labadov, V.S., Carelson, M.: CODESSA training manual. University of Florida, Gainesville (1995)

    Google Scholar 

  25. Katritzky, A.R., Labadov, V.S., Carelson, M.: CODESSA version 1 reference manual. University of Florida, Gainesville (1994)

    Google Scholar 

  26. Goldberg, D.E.: Genetic algorithms in search. Optimization and machine learning. Addison-Wesley, New York (1989)

    Google Scholar 

  27. Hoskuldsson, A.: Prediction methods in science and technology, Vol. 1: Basic Theory. Thur Publishing, Denmark (1996)

  28. Leardi, R., Boggia, R., Terrile, M.: Genetic algorithm as a strategy for feature selection. J. Chemom. 6, 267–281 (1992)

    Article  CAS  Google Scholar 

  29. Leardi, R., Gonzalez, A.L.: Genetic algorithm applied to feature selection in PLS regression: how and when to use them. Chemom. Intell. Lab. Syst. 41, 195–207 (1998)

    Article  CAS  Google Scholar 

  30. Lorber, A., Wangen, L., Kowalsky, B.R.: Theoretical foundation for the PLS algorithm. J. Chemom. 1, 19–31 (1987)

    Article  CAS  Google Scholar 

  31. Khayamian, T., Ensafi, A.A., Hemmateenejad, B.: Simultaneous determination of cobalt, nickel and copper using partial least squares based on singular value decomposition. Talanta 49, 587–596 (1999)

    Article  CAS  Google Scholar 

  32. Shamsipur, M., Hemmateenejad, B., Akhond, M., Sharghi, H.: Quantitative structure property relationship study of acidity constants of some 9,10-anthraquinone derivatives using multiple linear regression and partial least squares procedures. Talanta 54, 1113–1120 (2001)

    Article  CAS  Google Scholar 

  33. Hoskuldsson, A.: Variable and subset selection in PLS regression. Chemom. Intell. Lab. Syst. 55, 23–38 (2001)

    Article  CAS  Google Scholar 

  34. MATLAB 7.0. The Mathworks Inc., Natick, MA, USA; http://www.mathworks.com

  35. Husain, S., Devi, K.S., Krishna, D., Reddy, P.J.: Characterization and identification of edible oil blends and prediction of the composition by artificial neural networks—A case study. Chemom. Intell. Lab. Syst. 35, 117–126 (1996)

    Article  CAS  Google Scholar 

  36. Holland, J.H.: Adaption in neural and artificial systems. MIT Press, Cambridge, MA (1992)

    Google Scholar 

  37. Zupan, J., Gasteiger, J.: Neural network in chemistry and drug design. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  38. Beal, T.M., Hagan, H.B., Demuth, M.: Neural network design. PWS, Boston (1996)

    Google Scholar 

  39. Zupan, J., Gasteiger, J.: Neural networks for chemists: an introduction. VCH, Weinheim (1993)

    Google Scholar 

  40. Blank, T.B., Brown, S.T.: Nonlinear multivariate mapping of chemical data using feed-forward neural networks. Anal. Chem. 65, 3081–3089 (1993)

    Article  CAS  Google Scholar 

  41. Jalali-Heravi, M., Fatemi, M.H.: Artificial neural network modeling of Kovats retention indices for noncyclic and monocyclic terpenes. J. Chromatogr. A 915, 177–183 (2001)

    Article  CAS  Google Scholar 

  42. Golbraikh, A., Tropsha, A.: Beware of q 2. J. Mol. Graphics Model. 20, 269–276 (2002)

    Article  CAS  Google Scholar 

  43. Roy, P.P., Roy, K.: On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 27, 302–313 (2008)

    Article  CAS  Google Scholar 

  44. Zefirov, N.S., Kirpichenok, M.A., Izmailov, F.F., Trofimov, M.I.: Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of Sanderson’s principle. Dokl. Akad. Nauk SSSR 296, 883–887 (1987)

    CAS  Google Scholar 

  45. Kirpichenok, M.A., Zefirov, N.S.: Electronegativity and molecular geometry. General principles of the method and analysis of the effect of short-range electrostatic interactions on bond lengths in organic molecules. Zh. Org. Khim. 23, 607–623 (1987)

    Google Scholar 

  46. Stanton, D.T., Jurs, P.C.: Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure–property relationship studies. Anal. Chem. 62, 2323–2329 (1990)

    Article  CAS  Google Scholar 

  47. Stanton, D.T., Egolf, L.M., Jurs, P.C., Hicks, M.G.: Computer-assisted prediction of normal boiling points of pyrans and pyrroles. J. Chem. Inf. Comput. Sci. 32, 306–316 (1992)

    Article  CAS  Google Scholar 

  48. Kier, L.B., Hall, H.: Molecular connectivity in structure–activity analysis. Wiley & Sons, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Dashtbozorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golmohammadi, H., Dashtbozorgi, Z. & Acree, W.E. Prediction of Heat Capacities of Hydration of Various Organic Compounds Using Partial Least Squares and Artificial Neural Network. J Solution Chem 42, 338–357 (2013). https://doi.org/10.1007/s10953-012-9943-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9943-z

Keywords

Navigation