Skip to main content
Log in

Critical Behavior of Binary Mixtures of Nitrobenzene + n-Undecane and Nitrobenzene + n-Dodecane

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Turbidities and isobaric heat capacities per unit volume, in a wide temperature range, have been measured for critical binary solutions of {nitrobenzene + n-undecane} and {nitrobenzene + n-dodecane}. The critical exponents and the system-dependent critical amplitudes were deduced. The non-critical and the critical-fluctuation induced contributions to the background heat capacities were determined. We also obtained the coupling constant \( \bar{u} \) by analyzing the coexistence curve data with crossover theory. These parameters were used to test some universal amplitude ratios and together with the coexistence-curve data to test the complete scaling theory. It is shown that the contribution from heat capacity plays an important role in describing the asymmetric criticality of the coexistence curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Greer, S.C., Moldover, M.R.: Thermodynamic anomalies at critical points of fluids. Annu. Rev. Phys. Chem. 32, 233–265 (1981)

    Article  CAS  Google Scholar 

  2. Sengers, J.V., Sengers, J.M.H.L.: Thermodynamic behavior of fluids near the critical point. Annu. Rev. Phys. Chem. 37, 189–222 (1986)

    Article  CAS  Google Scholar 

  3. Guida, R., Zinn-Justin, J.: Critical exponents of N-vector model. J. Phys. A 31, 8103–8121 (1998)

    Article  Google Scholar 

  4. Pelissetto, A., Vicari, E.: Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002)

    Article  CAS  Google Scholar 

  5. Sengers, J.V., Shanks, J.G.: Experimental critical-exponent values for fluids. J. Stat. Phys. 137, 857–877 (2009)

    Article  CAS  Google Scholar 

  6. Bagnuls, C., Bervillier, C., Meiron, D.I., Nickel, B.G.: Nonasymptotic critical behavior from field theory at d = 3. II. The ordered-phase case. Phys. Rev. B 35, 3585–3607 (1987)

    Article  Google Scholar 

  7. Liu, A.J., Fisher, M.E.: The three-dimensional Ising model revisited numerically. Phys. A 156, 35–76 (1989)

    Article  Google Scholar 

  8. Fisher, M.E., Zinn, S.Y.: The shape of the van der Waals loop and universal critical amplitude ratios. J. Phys. A 31, L629–L635 (1998)

    Article  Google Scholar 

  9. Campostrini, M., Pelissetto, A., Rossi, P., Vicari, E.: Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems. Phys. Rev. E 60, 3526–3563 (1999)

    Article  CAS  Google Scholar 

  10. An, X.Q., Zhao, H.H., Jiang, F.G., Mao, C.F., Shen, W.G.: The coexistence curves of xC6H5NO2 + (1 − x)CH3(CH2)12CH3 in the critical region. J. Chem. Thermodyn. 29, 1047–1054 (1997)

    Article  CAS  Google Scholar 

  11. An, X.Q., Zhao, H.H., Jiang, F.G., Shen, W.G.: The coexistence curves of xC6H5NO2 + (1 − x)CH3(CH2)10CH3 in the critical region. J. Chem. Thermodyn. 30, 21–26 (1998)

    Article  CAS  Google Scholar 

  12. An, X.Q., Jiang, F.G., Zhao, H.H., Chen, C.Y., Shen, W.G.: Measurements of coexistence curves and turbidity for xC6H5NO2 + (1 − x)CH3(CH2)6CH3 in the critical region. J. Chem. Thermodyn. 30, 751–760 (1998)

    Article  CAS  Google Scholar 

  13. An, X.Q., Li, P., Zhao, H.H., Shen, W.G.: The coexistence curves of xC6H5NO2 + (1 − x)CH3(CH2)3CH3 and xC6H5NO2 + (1 − x)CH3(CH2)8CH3 in the critical region. J. Chem. Thermodyn. 30, 1049–1059 (1998)

    Article  CAS  Google Scholar 

  14. An, X.Q., Jiang, F.G., Zhao, H.H., Shen, W.G.: The measurements of coexistence curves and turbidity for xC6H5NO2 + (1 − x)CH3(CH2)9CH3 in the critical region. J. Chem. Thermodyn. 30, 1181–1190 (1998)

    Article  CAS  Google Scholar 

  15. Tang, K., Zhou, C.S., An, X.Q., Shen, W.G.: The coexistence curves of xC6H5NO2 + (1 − x)CH3(CH2)4CH3 and xC6H5NO2 + (1 − x)CH3(CH2)5CH3 in the critical region. J. Chem. Thermodyn. 31, 943–954 (1999)

    Article  CAS  Google Scholar 

  16. An, X.Q., Jiang, F.G., Shen, W.G.: Turbidity measurements of critical solutions of n-alkanes in nitrobenzene. J. Chem. Soc. Faraday Trans. 94, 2169–2172 (1998)

    Article  CAS  Google Scholar 

  17. Souto-Caride, M., Troncoso, J., Peleteiro, J., Carballo, E., Romani, L.: Viscosity anomaly near the critical point in nitrobenzene + alkane binary systems. Phys. Rev. E 71, 041503 (2005)

    Article  CAS  Google Scholar 

  18. Souto-Caride, M., Troncoso, J., Peleteiro, J., Carballo, E., Romani, L.: Estimation of critical amplitudes of the correlation length by means of calorimetric and viscosimetric measurements. Chem. Phys. 324, 483–488 (2006)

    Article  CAS  Google Scholar 

  19. Utt, N.J., Lehman, S.Y., Jacobs, D.T.: Heat capacity of the liquid–liquid mixture nitrobenzene and dodecane near the critical point. J. Chem. Phys. 127, 104505 (2007)

    Article  Google Scholar 

  20. Losada-Perez, P., Cordoyiannis, G., Cerdeirina, C.A., Glorieux, C., Thoen, J.: Specific heat capacity of nitrobenzene-tetradecane near the liquid–liquid critical point. Int. J. Thermophys. 31, 710–716 (2010)

    Article  CAS  Google Scholar 

  21. Leys, J., Losada-Perez, P., Cordoyiannis, G., Cerdeirina, C.A., Glorieux, C., Thoen, J.: Temperature, concentration, and frequency dependence of the dielectric constant near the critical point of the binary liquid mixture nitrobenzene + tetradecane. J. Chem. Phys. 132, 104508 (2010)

    Article  Google Scholar 

  22. Perez-Sanchez, G., Losada-Perez, P., Cerdeirina, C.A., Thoen, J.: Critical behavior of the static properties for nitrobenzene-alkane mixtures. J. Chem. Phys. 132, 214503 (2010)

    Article  Google Scholar 

  23. Urbanowicz, P., Rzoska, S.J., Paluch, M., Sawicki, B., Szulc, A., Ziolo, J.: Influence of intermolecular interactions on the sign of dT c/dP in critical solutions. Chem. Phys. 201, 575–582 (1995)

    Article  CAS  Google Scholar 

  24. Losada-Perez, P., Blesic, M., Perez-Sanchez, G., Cerdeirina, C.A., Troncoso, J., Romani, L., Szydlowski, J., Rebelo, L.P.N.: Solution thermodynamics near the liquid–liquid critical point: I. First order excess derivatives. Fluid Phase Equilib. 258, 7–15 (2007)

    Article  CAS  Google Scholar 

  25. Yin, T.X., Lei, Y.T., Huang, M.J., Chen, Z.Y., Mao, C.F., An, X.Q., Shen, W.G.: Critical behavior of binary mixture of {xC6H5CN + (1−x)CH3(CH2)12CH3}: Measurements of coexistence curves, turbidity, and heat capacity. J. Chem. Thermodyn. 43, 656–663 (2011)

    Article  CAS  Google Scholar 

  26. Lei, Y.T., Chen, Z.Y., Wang, N., Mao, C.F., An, X.Q., Shen, W.G.: Critical behaviour of binary mixture of {xC6H5CN + (1-x)CH3(CH2)7CH3}: Measurements of coexistence curves, light scattering, and heat capacity. J. Chem. Thermodyn. 42, 864–972 (2010)

    Article  CAS  Google Scholar 

  27. Cerdeirina, C.A., Miguez, J.A., Carballo, E., Tovar, C.A., de la Puente, E., Romani, L.: Highly precise determination of the heat capacity of liquids by DSC: Calibration and measurement. Thermochim. Acta 347, 37–44 (2000)

    Article  CAS  Google Scholar 

  28. Puglielli, G., Ford Jr, N.C.: Turbidity measurements in SF6 near its critical point. Phys. Rev. Lett. 25, 143–147 (1970)

    Article  CAS  Google Scholar 

  29. Shanks, J.G., Sengers, J.V.: Double scattering in critically opalescent fluids. Phys. Rev. A 38, 885–896 (1988)

    Article  CAS  Google Scholar 

  30. Bailey, A.E., Cannell, D.S.: Practical method for calculation of multiple light scattering. Phys. Rev. E 50, 4853–4864 (1994)

    Article  CAS  Google Scholar 

  31. Shen, W.G., Smith, G.R., Knobler, C.M., Scott, R.L.: Turbidity measurements of binary polystyrene solutions near critical solution points. J. Phys. Chem. 95, 3376–3379 (1991)

    Article  CAS  Google Scholar 

  32. Jacobs, D.T., Lau, S.M.Y., Mukherjee, A., Williams, C.A.: Measuring turbidity in a near-critical, liquid–liquid system: A precise, automated experiment. Int. J. Thermophys. 20, 877–887 (1999)

    Article  CAS  Google Scholar 

  33. Stanffer, D., Ferer, M., Wortis, M.: Universality of second-order phase transitions: The scale factor for the correlation length. Phys. Rev. Lett. 29, 345–349 (1972)

    Article  Google Scholar 

  34. Hohenberg, C., Aharony, A., Halperin, B.I., Sigia, E.D.: Two-scale-factor universality and the renormalization group. Phys. Rev. B 13, 2986–2996 (1979)

    Article  Google Scholar 

  35. Jacobs, D.T.: Critical point shifts in binary fluid mixtures. J. Chem. Phys. 91, 560–563 (1989)

    Article  CAS  Google Scholar 

  36. Sanchez, G., Meichle, M., Garland, C.W.: Critical heat capacity in a 3-methylpentane + nitroethane mixture near its consolute point. Phys. Rev. A 28, 1647–1653 (1983)

    Article  CAS  Google Scholar 

  37. Beysens, D., Bourgou, A., Calmettes, P.: Experimental determinations of universal amplitude combinations for binary fluids I. Stat. Phys. Rev. A 26, 3589–3609 (1982)

    Article  CAS  Google Scholar 

  38. Oby, E.R., Jacobs, D.T.: Heat capacity of the liquid–liquid mixture perfluoroheptane and 2,2,4-trimethylpentane near the critical point. J. Chem. Phys. 114, 4918–4921 (2001)

    Article  CAS  Google Scholar 

  39. Barmatz, M., Hahn, I., Lipa, J.A., Duncan, R.V.: Critical phenomena in microgravity: Past, present, and future. Rev. Mod. Phys. 79, 1–52 (2007)

    Article  CAS  Google Scholar 

  40. Bervillier, C., Godreche, C.: Universal combination of critical amplitudes from field theory. Phys. Rev. B 21, 5427–5431 (1980)

    Article  CAS  Google Scholar 

  41. Bagnuls, C., Bervillier, C.: A new theoretical constraint on the static critical behavior of the specific heat. Phys. Lett. A 107, 299–304 (1985)

    Article  Google Scholar 

  42. Flewelling, A.C., DeFonseka, R.J., Khaleeli, N., Partee, J., Jacobs, D.T.: Heat capacity anomaly near the critical point of aniline–cyclohexane. J. Chem. Phys. 104, 8048–8057 (1996)

    Article  CAS  Google Scholar 

  43. Nowicki, A.W., Ghosh, M., McClellan, S.M., Jacobs, D.T.: Heat capacity and turbidity near the critical point of succinonitrile–water. J. Chem. Phys. 114, 4625–4633 (2001)

    Article  CAS  Google Scholar 

  44. Bagnuls, C., Bervillier, C.: Nonasymptotic critical behavior from field theory at d = 3: The disordered-phase case. Phys. Rev. B 32, 7209–7231 (1985)

    Article  Google Scholar 

  45. Nicoll, J.F., Albright, P.C.: Background fluctuations and Wegner corrections. Phys. Rev. B 34, 1991–1996 (1986)

    Article  CAS  Google Scholar 

  46. Anisimov, M.A., Kiselev, S.B., Sengers, J.V., Tang, S.: Crossover approach to global critical phenomena in fluids. Phys. A 188, 487–525 (1992)

    Article  Google Scholar 

  47. Gutkowski, K.I., Anisimov, M.A., Sengers, J.V.: Crossover criticality in ionic solutions. J. Chem. Phys. 114, 3133–3148 (2001)

    Article  CAS  Google Scholar 

  48. Fisher, M.E., Orkoulas, G.: The Yang–Yang anomaly in fluid criticality: Experiment and scaling theory. Phys. Rev. Lett. 85, 696–699 (2000)

    Article  CAS  Google Scholar 

  49. Orkoulas, G., Fisher, M.E., Ustun, C.: The Yang–Yang relation and the specific heats of propane and carbon dioxide. J. Chem. Phys. 113, 7530–7545 (2000)

    Article  CAS  Google Scholar 

  50. Kim, Y.C., Fisher, M.E., Orkoulas, G.: Asymmetric fluid criticality. I. Scaling with pressure mixing. Phys. Rev. E 67, 061506 (2003)

    Article  Google Scholar 

  51. Anisimov, M.A., Wang, J.T.: Nature of asymmetry in fluids criticality. Phys. Rev. Lett. 97, 025703 (2006)

    Article  Google Scholar 

  52. Cerdeirina, C.A., Anisimov, M.A., Sengers, J.V.: The nature of singular coexistence-curve diameters of liquid–liquid phase equilibria. Chem. Phys. Lett. 424, 414–419 (2006)

    Article  CAS  Google Scholar 

  53. Wang, J.T., Anisimov, M.A.: Nature of vapor-liquid asymmetry in fluid criticality. Phys. Rev. E 75, 051107 (2007)

    Article  Google Scholar 

  54. Wang, J.T., Cerdeirina, C.A., Anisimov, M.A., Sengers, J.V.: Principle of isomorphism and complete scaling for binary-fluid criticality. Phys. Rev. E 77, 031127 (2008)

    Article  Google Scholar 

  55. Losada-Perez, P., Perez-Sanchez, G., Cerdeirina, C.A., Thoen, J.: Dielectric constant of fluids and fluid mixtures at criticality. Phys. Rev. E 81, 041121 (2010)

    Article  Google Scholar 

  56. Bertrand, C.E., Sengers, J.V., Anisimov, M.A.: Critical behavior of the dielectric constant in asymmetric fluids. J. Phys. Chem. B. 115, 14000–14007 (2011)

    Article  CAS  Google Scholar 

  57. Bertrand, C.E., Anisimov, M.A.: Complete scaling for inhomogeneous fluids. Phys. Rev. Lett. 104, 205702 (2010)

    Article  CAS  Google Scholar 

  58. Perez-Sanchez, G., Losada-Perez, P., Cerdeirina, C.A., Sengers, J.V., Anisimov, M.A.: Asymmetric criticality in weakly compressible liquid mixtures. J. Chem. Phys. 132, 154502 (2010)

    Article  CAS  Google Scholar 

  59. Huang, M.J., Lei, Y.T., Yin, T.X., An, X.Q., Shen, W.G.: Heat capacities and asymmetric criticality of coexistence curves for benzonitrile + alkanes and dimethyl carbonate + alkanes. J. Phys. Chem. B 115, 13608–13616 (2011)

    Article  CAS  Google Scholar 

  60. Huang, M.J., Chen, Z.Y., Yin, T.Y., An, X.Q., Shen, W.G.: Critical behavior of binary mixtures of dimethyl carbonate + nonane and dimethyl carbonate + dodecane: Measurements of the coexistence curves. J. Chem. Eng. Data 56, 2349–2355 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Projects 20973061, 21073063, and 21173080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guo Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, TX., Lei, YT., Huang, MJ. et al. Critical Behavior of Binary Mixtures of Nitrobenzene + n-Undecane and Nitrobenzene + n-Dodecane. J Solution Chem 41, 1866–1888 (2012). https://doi.org/10.1007/s10953-012-9907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9907-3

Keywords

Navigation