Skip to main content
Log in

Determination of the Dissociation Constants of Some Macrolide Antibiotics in Methanol–Water Binary Mixtures by UV-Spectroscopy and Correlations with the Kamlet and Taft Solvatochromic Parameters

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The dissociation constants of six common human and veterinary antibiotics, namely, erythromycin, roxithromycin, tilmicosin, oleandomycin, josamycin, and spiramycin in 15 %, 25 %, 40 % and 50 % (v/v) methanol–water solvent mixtures were determined by UV/pH titration and correlated with the Kamlet and Taft solvatochromic parameters, π , α and β. Kamlet and Taft’s general equation was reduced to two terms by combined factor analysis and target factor analysis in these mixtures: the independent term and polarity/polarizability π , which are solvatochromic parameters. The influence of methanol on the dissociation constants was investigated. Further, the quasi-lattice quasi-chemical (QLQC) model of preferential solvation has been applied to quantify the preferential solvation by water of electrolytes in methanol–water mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Omura, S. (ed.): Macrolide Antibiotics: Chemistry, Biology and Practice, 2nd edn. Academic Press, Orlando (2002)

    Google Scholar 

  2. Kees, F., Spangler, S., Wellenhofer, M.: Determination of macrolides in biological matrices by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A 812, 287–293 (1998)

    Article  CAS  Google Scholar 

  3. Di Corcia, A., Nazzari, M.: Liquid chromatographic-mass spectrometric methods for analyzing antibiotic and antibacterial agents in animal food products. J. Chromatogr. A 974, 53–89 (2002)

    Article  CAS  Google Scholar 

  4. Newton, D.W., Kluza, R.B.: pK a values of medicinal compounds in pharmacy practice. Drug. Intel. Clin. Pharm. 12, 546–549 (1978)

    CAS  Google Scholar 

  5. Rafols, C., Roses, M., Bosch, E.: Dissociation constants of several non-steroidal anti-inflammatory drugs in isopropyl alcohol/water mixtures. Anal. Chim. Acta 350, 249–255 (1997)

    Article  CAS  Google Scholar 

  6. Evagelou, V., Tsantili-Kakoulidou, A., Koupparis, M.: Determination of the dissociation the cephalosporins cefepime and cefpirome using UV spectrometry and pH potentiometry. J. Pharm. Biomed. Anal. 31, 1119–1128 (2003)

    Article  CAS  Google Scholar 

  7. Jimenez-Lozano, E., Marques, I., Barron, D., Beltran, J.L., Barbosa, J.: Determination of pK a values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector. Anal. Chim. Acta 464, 37–45 (2002)

    Article  CAS  Google Scholar 

  8. Rived, F., Canals, I., Bosch, E., Roses, M.: Acidity of methanol–water. Anal. Chim. Acta 439, 315–333 (2001)

    Article  CAS  Google Scholar 

  9. Roses, M., Rafols, C., Ortega, J., Bosch, E.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing E T(30) polarity of bipolar hydrogen bond acceptor–cosolvent mixtures. J. Chem. Soc., Perkin Trans. 2 8, 1607–1615 (1995)

    Article  Google Scholar 

  10. Foulon, C., Duhal, N., Lacroix-Callens, B., Vaccher, C., Bonte, J.P., Goossens, J.F.: Determination of pK a values of benzoxa-, benzothia- and benzoselena-zolinone derivatives by capillary electrophoresis, comparison with potentiometric titration and spectrometric data. Eur. J. Pharm. Sci. 31, 165–171 (2007)

    Article  CAS  Google Scholar 

  11. Gluck, S.J., Cleveland, J.A.: Capillary zone electrophoresis for the determination of dissociation constants. J. Chromatogr. 680, 43–48 (1994)

    Article  CAS  Google Scholar 

  12. Hasegawa, J., Fujita, T., Hayashi, Y., Iwamoto, K., Watanabe, J.: pK a determination of verapamil by liquid–liquid partition. J. Pharm. Sci. 73(4), 442–445 (1984)

    Article  CAS  Google Scholar 

  13. Erdemgil, F.Z., Sanli, S., Sanli, N., Ozkan, G., Barbosa, J., Guiteras, J., Beltran, J.L.: Determination of pK a values of some hydroxylated benzoic acids in methanol–water binary mixtures by LC methodology and potentiometry. Talanta 72, 489–496 (2007)

    Article  CAS  Google Scholar 

  14. Volgyi, G., Ruiz, R., Box, K., Comer, J., Bosch, E., Takacs-Novak, K.: Potentiometric and spectrophotometric pK a determination of water-insoluble compounds: validation study in a new cosolvent system. Anal. Chim. Acta 583, 418–428 (2007)

    Article  Google Scholar 

  15. Kim, H.S., Chung, T.D., Kim, H.: Voltammetric determination of the pK a of various acids in polar aprotic solvents using 1,4-benzoquinone. J. Electroanal. Chem. 209, 496–498 (2001)

    Google Scholar 

  16. Barrette, J.W.C., Johnson, J.H.W., Sawyer, D.T.: Voltammetric evaluation of the effective acidities pK a for Broensted acids in aprotic solvents. Anal. Chem. 56, 1890–1898 (1984)

    Article  CAS  Google Scholar 

  17. Maran, F., Caledon, D., Severin, M.G., Vianello, E.J.: Electrochemical determination of the pK a of weak acids in N,N-dimethylformamide. J. Am. Chem. Soc. 113, 9320–9329 (1991)

    Article  CAS  Google Scholar 

  18. Polster, J., Lachmann, H.: Spectrometric Titrations: Analysis of Chemical Equilibria. VCH, Weinheim (1989)

    Google Scholar 

  19. Beltran, J.L., Codony, R., Prat, M.D.: Evaluation of stability constants from multiwavelenght absorbance data: Program STAR. Anal. Chim. Acta 276, 441–454 (1993)

    Article  CAS  Google Scholar 

  20. Marques, I., Fonrodona, G., Buti, S., Barbosa, J.: Solvent effects on mobile phases used in LC by factor analysis applied to protonation equilibria and solvatochromic parameters. TrAC, Trends Anal. Chem. 18, 472–479 (1999)

    Article  CAS  Google Scholar 

  21. Marcus, Y.: Preferential solvation. Part 3. Binary solvent mixtures. J. Chem. Soc., Faraday Trans. I 85, 381–388 (1989)

    Article  CAS  Google Scholar 

  22. Gran, G.: Determination of the equivalence point in potentiometric titrations—Part II. Analyst 7, 661–671 (1952)

    Article  Google Scholar 

  23. Barbosa, J., Fonrodona, G., Marques, I., Sanz-Nebot, V., Toro, I.: Solvent effects on protonation equilibria of peptides and quinolones by factor analysis applied to the correlation between dissociation constants and solvatochromic parameters in acetonitrile–water mixtures. Anal. Chim. Acta 351, 397–405 (1997)

    Article  CAS  Google Scholar 

  24. Casassas, E., Fonrodona, G., de Juan, A., Tauler, R.: Assessment of solvent parameters and their correlation with protonation constants in dioxane–water mixtures using factor analysis. Chemometr. Intell. Lab. Syst. 12, 29–38 (1991)

    Article  CAS  Google Scholar 

  25. Casassas, E., Dominguez, N., Fonrodona, G., de Juan, A.: Factor analysis applied to the study of the effects of solvent composition and nature of the inert electrolyte on the protonation constants in dioxane-water mixtures. Anal. Chim. Acta 283, 548–558 (1993)

    Article  CAS  Google Scholar 

  26. Barbosa, J., Fonrodona, G., Marqués, I., Buti, S., Toro, I.: Factor analysis applied to the correlation between dissociation constants and solvatochromic parameters in water–acetonitrile mixtures. TrAC, Trends Anal. Chem. 16, 104–111 (1997)

    Article  CAS  Google Scholar 

  27. Sindreu, R.J., Moya, M.L., Sanchez Burgos, F., Gonzalez, A.G.: Solvent effects on the dissociation of aliphatic carboxylic acids in water–N,N-dimethylformamide mixtures: correlation between acidity constants and solvatochromic parameters. J. Solution Chem. 23, 1101–1109 (1994)

    Article  CAS  Google Scholar 

  28. Malinowski, E.R.: Factor Analysis in Chemistry, 2nd edn. Wiley-Interscience, New York (1991)

    Google Scholar 

  29. González-Arjona, D., Mejias, J.A., Gonzalez, A.G.: Holmes: a program for target factor analysis. Anal. Chim. Acta 295, 119–125 (1994)

    Article  Google Scholar 

  30. Gonzáles-Arjona, D., Mejias, J.A., Gonzalez, A.G.: Corrigendum: Holmes: a program for target factor analysis. Anal. Chim. Acta 295, 119–125 (1994) by González-Arjona, D., Mejias, J.A., Gonzalez, A.G. Anal. Chim. Acta 297, 473 (1994).

    Article  Google Scholar 

  31. Qiang, Z., Adams, C.: Potentiometric determination of acid dissociation constants (pK a) for human and veterinary antibiotics. Water Res. 38, 2874–2890 (2004)

    Article  CAS  Google Scholar 

  32. Sanli, S., Sanli, N., Alsancak, G.: Spectrophotometric determination acidity constant of some macrolides in acetonitrile–water binary mixtures. Acta Chim. Slov. 980, 57–65 (2010)

    Google Scholar 

  33. Gutbezahl, B., Grunwald, E.: The effect of solvent on equilibrium and rate constants. II. The measurement and correlation of acid dissociation constants. J. Am. Chem. Soc. 75, 559–565 (1953)

    Article  CAS  Google Scholar 

  34. De Ligny, C.L.: The dissociation constants of some aliphatic amines in water and in methanol–water mixtures at 25 °C. Recl. Trav. Chim. Pays-Bas Belg. 79, 731–736 (1960)

    Google Scholar 

  35. Paabo, M., Bates, R.G., Robinson, R.A.: Dissociation of ammonium ion in methanol–water solvents. J. Phys. Chem. 70, 247–251 (1966)

    Article  CAS  Google Scholar 

  36. Pawlak, Z., Bates, R.G.: Solute–solvent interactions in acid–base dissociation: nine protonated nitrogen bases in water–DMSO solvents. J. Solution Chem. 4, 817–829 (1975)

    Article  CAS  Google Scholar 

  37. Pawlak, Z., Bates, R.G.: Solute–solvent interactions in acid–base dissociation: seven protonated nitrogen bases in water–n-methyl-2-pyrrolidinone solvents. J. Solution Chem. 5, 325–332 (1976)

    Article  CAS  Google Scholar 

  38. Sücha, L., Kotrly, S.: Solution Equilibria in Analytical Chemistry. Van Nostrand-Reinhold, London (1972)

    Google Scholar 

  39. Bosch, E., Espinosa, S., Roses, M.: Retention of ionizable compounds on high-performance liquid chromatography: III. Variation of pK values of acids and pH values of buffers in acetonitrile–water mobile phases. J. Chromatogr. A 824, 137–146 (1998)

    Article  CAS  Google Scholar 

  40. Izmailov, N.A., Izmailova, V.N.: The effects of solvation of ions and molecules on acid dissociation in solution. Zh. Fiz. Khim. 29, 1050–1063 (1955)

    CAS  Google Scholar 

  41. Pawlak, Z.: Solvent effects on acid–base behavior. J. Chem. Thermodyn. 19, 443–447 (1987)

    Article  CAS  Google Scholar 

  42. Marcus, Y.: Preferential solvation in mixed solvents X. Completely miscible aqueous co-solvent binary mixtures at 298.15 K. Monatsh. Chem. 132, 1387–1411 (2001)

    Article  CAS  Google Scholar 

  43. Marcus, Y., Migron, Y.: Polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane. J. Phys. Chem. 95, 400–406 (1991)

    Article  CAS  Google Scholar 

  44. Marcus, Y.: A quasi-lattice quasi-chemical theory of preferential solvation of ions in mixed solvents. Aust. J. Chem. 36, 1719–1731 (1983)

    Article  CAS  Google Scholar 

  45. Marcus, Y.: Preferential solvation of ions in mixed solvents. Part 2. The solvent composition near the ion. J. Chem. Soc., Faraday Trans. I 84, 1465–1473 (1988)

    Article  CAS  Google Scholar 

  46. Marcus, Y.: Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 1—Gibbs free energies of transfer of nonaqueous solvents. Pure Appl. Chem. 55, 977–1021 (1983)

    Article  CAS  Google Scholar 

  47. Marques, I., Fonrodona, G., Bute, S., Barbosa, J.: Solvent effects on mobile phases used in liquid chromatography: factor analysis applied to protonation equilibria and solvatochromic parameters. TrAC, Trends Anal. Chem. 18, 543–549 (1999)

    Article  Google Scholar 

  48. Hemmateenejad, B., Sharghi, H., Akhond, M., Shamsipur, M.: The importance of polarity/polarizability interaction on the acidity behavior of 9,10-anthraquinone and 9-anthrone derivatives in methanol–water mixed solvents using target factor analysis and QSPR approaches. J. Solution Chem. 32, 215–226 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge Dr. Jose L. Beltran from Universitat de Barcelona for kindly providing the spectral data processing software, STAR. Also, financial support of this project by Gazi University-BAP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senem Şanlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şanlı, S., Altun, Y. & Alsancak, G. Determination of the Dissociation Constants of Some Macrolide Antibiotics in Methanol–Water Binary Mixtures by UV-Spectroscopy and Correlations with the Kamlet and Taft Solvatochromic Parameters. J Solution Chem 41, 1352–1363 (2012). https://doi.org/10.1007/s10953-012-9868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9868-6

Keywords

Navigation