Skip to main content
Log in

Temperature Dependence of Physical Properties of Imidazolium Based Ionic Liquids: Internal Pressure and Molar Refraction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density, speed of sound and refractive index of the imidazolium-based ionic liquids (ILs), 1-methyl-3-octylimidazolium chloride [C8mim][Cl], 1-butyl-3-methylimidazolium methyl sulfate [C4mim][C1OSO3], and 1-butyl-3-methylimidazolium octyl sulfate [C4mim][C8OSO3], have been measured in the temperature range from 283.15 to 343.15 K. Experimental density and speed of sound have been used to calculate the internal pressure p i of the ILs. The p i values were found to be higher than those of water and molecular organic liquids, but lower than those of classical molten salts. We also calculated molar refraction R M from the measured refractive index n D in the temperature range from 288.15 to 343.15 K. Refractive indices of ILs were also higher than those of normal organic liquids, but comparable to long-chain hydrocarbon organic solvents. The structure-property correlation of the ILs has been discussed and the results have been compared to our earlier studies (Kumar in J. Solution Chem. 37:203–214, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Earle, M.J., McCormac, P.B., Seddon, K.R.: Regioselective alkylation in ionic liquids. Chem. Commun. 2245–2246 (1998)

  2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  3. Earle, M.J., Seddon, K.R., Adams, C.J., Roberts, G.: Friedel–Crafts reactions in room temperature ionic liquids. Chem. Commun. 2097–2098 (1998)

  4. Wasserscheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem., Int. Ed. 39, 3772–3789 (2000)

    Article  CAS  Google Scholar 

  5. Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W.: Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 124, 14247–14254 (2002)

    Article  CAS  Google Scholar 

  6. Leadbeater, N.E., Torenius, H.M.: A study of the ionic liquid mediated microwave heating of organic solvents. J. Org. Chem. 67, 3145–3148 (2002)

    Article  CAS  Google Scholar 

  7. Seddon, K.R.: Ionic liquids: A taste of the future. Nature Mat. 2, 363–365 (2003)

    Article  CAS  Google Scholar 

  8. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, New York (2003)

    Google Scholar 

  9. Gordon, C.M., Holbrey, J.D., Kennedy, A.R., Seddon, K.R.: Ionic liquid crystals: hexafluorophosphate salts. J. Mater. Chem. 8, 2627–2636 (1998)

    Article  CAS  Google Scholar 

  10. Seddon, K.R.: Room-temperature ionic liquids: neoteric solvents for clean catalysis. Kinet. Katal. 37, 693–697 (1996)

    CAS  Google Scholar 

  11. Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)

    Article  CAS  Google Scholar 

  12. Singh, T., Kumar, A.: Fluorescence behavior and specific interactions of an ionic liquid in ethylene glycol derivatives. J. Phys. Chem. B 112, 4079–4086 (2008)

    Article  CAS  Google Scholar 

  13. Jaeger, D.A., Tucker, C.E.: Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett. 30, 1785–1788 (1989)

    Article  CAS  Google Scholar 

  14. Lee, C.W.: Diels-Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement. Tetrahedron Lett. 40, 2461–2464 (1999)

    Article  CAS  Google Scholar 

  15. Holbrey, J.D., Seddon, K.R.: Ionic liquids. Clean Prod. Process. 1, 223–236 (1999)

    Google Scholar 

  16. Pinto, A.C., Moreira Lapis, A.A., Vasconcellos da Silva, B., Bastos, R.S., Dupont, J., Neto, B.A.D.: Pronounced ionic liquid effect in the synthesis of biologically active isatin-3-oxime derivatives under acid catalysis. Tetrahedron Lett. 49, 5639–5641 (2008)

    Article  CAS  Google Scholar 

  17. Dack, M.R.J.: The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 4, 211–229 (1975)

    Article  CAS  Google Scholar 

  18. Kumar, A.: Can internal pressure describe the effect of salt in aqueous Diels-Alder reaction? A possible explanation. J. Org. Chem. 59, 230–231 (1994)

    Article  CAS  Google Scholar 

  19. Kumar, A.: Rate enhancement in Diels-Alder reactions by perchlorate salts in nonaqueous solvents: An alternate explanation. J. Org. Chem. 59, 4612–4617 (1994)

    Article  CAS  Google Scholar 

  20. Kumar, A.: Stereoselectivities and reaction rates in Diels-Alder reactions promoted by non-aqueous solvents and their aqueous mixtures: Correlations with non-adjustable parameters. J. Phys. Org. Chem. 9, 287–292 (1996)

    Article  CAS  Google Scholar 

  21. Kumar, A.: Estimates of internal pressure and molar refraction of imidazolium based ionic liquids as a function of temperature. J. Solution Chem. 37, 203–214 (2008)

    Article  CAS  Google Scholar 

  22. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001)

    Article  CAS  Google Scholar 

  23. Letcher, T.M., Deenadayalu, N., Soko, B., Ramjugernath, D., Naicker, P.K.: Ternary liquid–liquid equilibria for mixtures of 1-methyl-3-octylimidazolium chloride + an alkanol + an alkane at 298.2 K and 1 bar. J. Chem. Eng. Data 48, 904–907 (2003)

    Article  CAS  Google Scholar 

  24. Gonzalez, E.J., Alonso, L., Dominguez, A.: Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and 1-propanol at T=(298.15, 313.15, and 328.15) K and at P=0.1 MPa. J. Chem. Eng. Data 51, 1446–1452 (2006)

    Article  CAS  Google Scholar 

  25. Gomez, E., Gonzalez, B., Dominguez, A., Tojo, E., Tojo, J.: Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 51, 696–701 (2006)

    Article  CAS  Google Scholar 

  26. Arce, A., Rodriguez, O., Soto, A.: Experimental determination of liquid–liquid equilibrium using ionic liquids: tert-amyl ethyl ether + ethanol + 1-octyl-3-methylimidazolium chloride system at 298.15 K. J. Chem. Eng. Data 49, 514–517 (2004)

    Article  CAS  Google Scholar 

  27. Pereiro, A.B., Verdia, P., Tojo, E., Rodriguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52, 377–380 (2006)

    Article  Google Scholar 

  28. Domanska, U., Pobudkowska, A., Wisniewska, A.: Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols: Analysis in terms of the PFP and FBT models. J. Solution Chem. 35, 311–334 (2006)

    Article  CAS  Google Scholar 

  29. Wandschneider, A., Lehmann, J.K., Heintz, A.: Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. J. Chem. Eng. Data 53, 596–599 (2008)

    Article  CAS  Google Scholar 

  30. Dávila, M.J., Aparicio, S., Alcalde, R., García, B., Leal, J.M.: On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chem. 9, 221–232 (2007)

    Article  Google Scholar 

  31. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  32. Fernandez, A., Torrecilla, J.S., Garcia, J., Rodriguez, F.: Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids. J. Chem. Eng. Data 52, 1979–1983 (2007)

    Article  CAS  Google Scholar 

  33. Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: (p,ρ,T) properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate at T=(298.15 to 398.15) K and pressures up to p=40 MPa. J. Mol. Liquids 136, 170–182 (2007)

    Google Scholar 

  34. Brennecke, J.F., Gu, Z.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)

    Article  Google Scholar 

  35. Woodcock, L.V., Singer, K.: Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Trans. Faraday Soc. 67, 12–30 (1971)

    Article  CAS  Google Scholar 

  36. Lewis, J.W.E., Singer, K.: Thermodynamic properties and self-diffusion of molten sodium chloride. J. Chem. Soc. Faraday Trans. 2 71, 41–53 (1975)

    Article  CAS  Google Scholar 

  37. Lopes, J.N.A.C., Pádua, A.A.H.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)

    Article  Google Scholar 

  38. Marcus, Y.: The Properties of Solvents. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T., Kumar, A. Temperature Dependence of Physical Properties of Imidazolium Based Ionic Liquids: Internal Pressure and Molar Refraction. J Solution Chem 38, 1043–1053 (2009). https://doi.org/10.1007/s10953-009-9429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9429-9

Keywords

Navigation