Skip to main content
Log in

Sodium Chloride Molar Conductance in Different Poly(ethylene glycol)–Water Mixed Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molar conductivities of NaCl in several poly(ethylene glycol)(PEG)–water “mixed solvents” are presented as a function of the PEG content in solution. Three different PEG samples, a monodispersed one and two polydispersed ones, have been used. The comparison between the molar conductivity values in the mixed solvents and the corresponding ones in pure water shows that the only effect of PEG on the ions’ motions is an obstruction effect despite the variation of the macroscopic dielectric constant induced by PEG itself. A comparison between the molar conductivities and the corresponding mutual main diffusion coefficients shows a tight correlation between the two quantities. This correlation is possible only in the absence of electrostatic effects due to the presence of PEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kjellander, R., Florin, E.: Water structure and changes in thermal stability of the system polyethylene oxide–water. J. Chem. Soc. Faraday Trans. 1 77, 2053–2077 (1981)

    Article  CAS  Google Scholar 

  2. Gao, K.: Polyethylene glycol as an embedment for microscopy and histochemistry, Chap. 1. CRC Press (1993)

  3. Fan, W., Glatz, C.E.: Charged protein partitioning in aqueous polyethylene glycol–dextran two-phase systems: salt effects. Sep. Sci. Technol. 34, 423–438 (1999)

    Article  CAS  Google Scholar 

  4. McPherson, A. Jr.: Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 251, 6300–6303 (1976)

    PubMed  CAS  Google Scholar 

  5. Brzozowski, A.M., Tolley, S.P.: Poly(ethylene) glycol monomethyl ethers—an alternative to poly(ethylene) glycols in protein crystallization. Acta Crystallograph. D 50, 466–468 (1994)

    CAS  Google Scholar 

  6. Patel, S., Cudney, B., McPherson, A.: Polymeric precipitants for the crystallization of macromolecules. Biochem. Biophys. Res. Commun. 207, 819–828 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. Atha, D.H., Ingham, K.C.: Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 256, 12108–12117 (1981)

    PubMed  CAS  Google Scholar 

  8. McPherson, A.: Virus and protein crystal growth on earth and in microgravity. J. Phys. D 26, B104–B112 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Arnold, K., Herrmann, A., Pratsch, L., Gawrisch, K.: The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815, 515–518 (1985)

    Article  PubMed  CAS  Google Scholar 

  10. Rosenbaum, D.F., Kulkarni, A., Ramakrishnan, S., Zukoski, C.F.: Protein interactions and phase behavior: sensitivity to the form of the pair potential. J. Chem. Phys. 111, 9882–9890 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Vergara, A., Paduano, L., Capuano, F., Sartorio, R.: Kirkwood-Buff integrals for polymer-solvent mixtures, preferential solvation and volumetric analysis in aqueous PEG solutions. Phys. Chem. Chem. Phys. 4, 4716–4723 (2002)

    Article  CAS  Google Scholar 

  12. Vergara, A., Capuano, F., Paduano, L., Sartorio, R.: Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol). Macromol. 39, 4500–4506 (2006)

    Article  CAS  Google Scholar 

  13. Vergara, A., Paduano, L., Vitagliano, V., Sartorio, R.: Multicomponent diffusion in crowded solutions. 1. Mutual diffusion in the ternary system poly(ethylene glycol) 400–NaCl–water. Macromol. 34, 991–1000 (2001)

    Article  CAS  Google Scholar 

  14. Capuano, F., Vergara, A., Paduano, L., Annunziata, O., Sartorio, R.: Electrostatic and excluded volume effects on the transport of electrolytes in poly(ethylene glycol)–water “mixed solvents”. J. Phys. Chem. B 107, 12363–12369 (2003)

    CAS  Google Scholar 

  15. Vergara, A., Annunziata, O., Paduano, L., Miller, D.G., Albright, J.G., Sartorio, R.: Multicomponent diffusion in crowded solutions. 2. Mutual diffusion in the ternary system tetra(ethylene glycol)–NaCl–water. J. Phys. Chem. B 108, 2764–2772 (2004)

    CAS  Google Scholar 

  16. Annunziata, O., Vergara, A., Paduano, L., Sartorio, R., Miller, D.G., Albright, J.G.: Precision of interferometric diffusion coefficients in a four-component system relevant to protein crystal growth: Lysozyme–tetra(ethylene glycol)–NaCl–H2O. J. Phys. Chem. B 107, 6590–6597 (2003)

    CAS  Google Scholar 

  17. Rard, J.A.: Isopiestic determination of the osmotic coefficients of Lu2(SO4)3(aq) and H2SO4(aq) at the temperature T=298.15 K, and review and revision of the thermodynamic properties of Lu2(SO4)3(aq) and Lu2(SO4)3⋅8H2O(cr). J. Chem. Thermodyn. 28, 83–100 (1996)

    Article  CAS  Google Scholar 

  18. Paduano, L., Sartorio, R., D’Errico, G., Vitagliano, V.: Mutual diffusion in aqueous solution of ethylene glycol oligomers at 25°C. J. Chem. Soc. Faraday Trans. 94, 2571–2576 (1998)

    Article  CAS  Google Scholar 

  19. Albright, J.G., Paduano, L., Sartorio, R., Vergara, A., Vitagliano, V.: Multicomponent diffusion in systems containing molecules of different size. 1. Mutual diffusion in the ternary system poly(ethylene glycol) 2000 + poly(ethylene glycol) 200 + water. J. Chem. Eng. Data 46, 1283–1291 (2001)

    Article  CAS  Google Scholar 

  20. Lobo, M.M.: Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties. University of Coimbra, Coimbra, Portugal (1984), p. 346

    Google Scholar 

  21. Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954)

    Article  CAS  Google Scholar 

  22. Bigg, P.H.: Density of water in SI units over the range 0–40. Br. J. Appl. Phys. 18, 521–525 (1967)

    Article  ADS  CAS  Google Scholar 

  23. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill (1978)

  24. Michels, A., Abels, J.C., ten Seldam, C.A., de Graaff, W.: Polynomial representation of experimental data; application to virial coefficients of gases. Physica (The Hague) 26, 381–392 (1960)

    Article  ADS  CAS  Google Scholar 

  25. Glasstone, S.: An Introduction to Electrochemistry, Chap. III. Van Nostrand (1960)

  26. MacInnes, D.A.: The Principle of Electrochemistry. Dover, New York (1961)

    Google Scholar 

  27. Walden, P.: Organic solvents and ionization media. III. Interior friction and its relation to conductivity. Z. Phys. Chem. 55, 207–249 (1906)

    CAS  Google Scholar 

  28. Tyrrel, H.J.V., Harris, K.R.: Diffusion in Liquids. Butterworth, London (1984)

    Google Scholar 

  29. Carter, J.M., Phillies, G.D.J.: Second-order concentration correction to the mutual diffusion coefficient of a suspension of hard Brownian spheres. J. Phys. Chem. 89, 5118–5124 (1985)

    Article  CAS  Google Scholar 

  30. Vergara, A., Paduano, L., Vitagliano, V., Sartorio, R.: Multicomponent diffusion in systems containing molecules of different size. 2. Mutual diffusion in the ternary system pentaethylene glycol–triethylene glycol–water. J. Phys. Chem. B 104, 8068–8074 (2000)

    CAS  Google Scholar 

  31. Lobo, M.M.: Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties. University of Coimbra, Coimbra, Portugal (1984), p. 349

    Google Scholar 

  32. Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients lij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem. 70, 2639–2659 (1966)

    CAS  Google Scholar 

  33. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworth, London (1970)

    Google Scholar 

  34. Bjerrum, N.: Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association. Kgl. Danske Videnskab. Selskab. Math.-fys. Medd. 7, 1–48 (1926)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sartorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capuano, F., Mangiapia, G., Ortona, O. et al. Sodium Chloride Molar Conductance in Different Poly(ethylene glycol)–Water Mixed Solvents. J Solution Chem 36, 617–629 (2007). https://doi.org/10.1007/s10953-007-9130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9130-9

Keywords

Navigation