Skip to main content
Log in

Complexation and Precipitation of Arsenate and Iron Species in Sodium Perchlorate Solutions at 25C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

The complexation of As(V) in aqueous solutions in the presence of iron(III) was investigated spectrophotometrically with both variable and constant ionic strengths. The determined thermodynamic and stoichiometric formation constants of the FeHAsO4+ species are log10β = 9.21± 0.01 and log10Iβ (1.0mol⋅dm−3 NaClO4) = 7.78 ± 0.01, respectively. The numerical treatment of the obtained spectral data was performed with the SPECA program. The analysis required the consideration of the hydrolysis of Fe(III) and the protonation of As(V) in the pH range studied. No significant hydrolysis was observed because of the low pH values (pH < 2.5) involved. The stabilities of the solid Fe(III) arsenates was established by solubility experiments. All of the solubility experiments were performed in aqueous NaClO4 solutions at constant ionic strength (1.0mol⋅dm−3) and at 25C. The experimental data were consistent with FeAsO4⋅2H2O being the solid phase (log10 Kso = −24.30± 0.08). The corresponding thermodynamic constants were computed by means of the Modified Bromley's Methodology (MBM) that describes the variation of the activity coefficients of all of the ions involved in the complexation and precipitation equilibria with the medium and ionic strength. Finally, the solid phase obtained in this work was also characterized by FT-IR and FT-Raman spectroscopies, and the hydration of the solid iron arsenate was confirmed by X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Pierce and C. B. Moore, Adsorption of Arsenite and Arsenate on Amorphous Iron Hydroxide, Water Res. 16, 1247–1253 (1982).

    Article  CAS  Google Scholar 

  2. P. E. Mariner, F. J. Holzmer, R. E. Jackson, and H. W. Meinardus, Effects of High pH on Arsenic Mobility in a Shallow Sandy Aquifer and on Aquifer Permeability Along the Adjacent Shoreline, Commencement Bay Superfund Site, Tacoma, Washington, Environ. Sci. Technol. 30, 1645–1651 (1996).

    Article  CAS  Google Scholar 

  3. E. E. van der Hoek and R. N. J. Comans, Modelling Arsenic and Selenium Leaching from Acidic Fly Ash by Sorption on Iron(hydr)oxide in the Fly Ash Matrix, Environ. Sci. Technol. 30, 517–523 (1996).

    CAS  Google Scholar 

  4. B. Daus, J. Mattusch, A. Paschke, H. Weiss, and R. Wennrich, Kinetics of the Arsenite Oxidation in Seepage Waters from a Tin Mill Tailings Pond, Talanta 51, 1087–1095 (2000).

    Article  CAS  Google Scholar 

  5. L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes (Metcalfe & Cooper Limited, London, 1964).

    Google Scholar 

  6. J. D. Rimstidt and P. M. Dove, Solubility and Stability of Scorodite, FeAsO4⋅2H2O, Am. Miner. 72, 852–855 (1987).

    CAS  Google Scholar 

  7. C. R. Paige, W. J. Snodgrass, R. V. Nicholson, and J. M. Scharer, An Arsenate Effect on Ferrihydrite Dissolution Kinetics under Acidic Oxic Conditions, Water Res. 31, 2370–2382 (1997).

    Article  CAS  Google Scholar 

  8. M. Leblanc, B. Achard, D. Othman, and J. M. Luck, Accumulation of Arsenic from Acidic Mine Waters by Ferruginous Bacterial Accretions (Stromatolites), Appl. Geochem. 11, 541–554 (1996).

    Article  CAS  Google Scholar 

  9. G. Borge, R. Castaño, M. P. Carril, M. S. Corbillón, and J. M. Madariaga, Development of a Modified Bromley's Methodology (MBM) for the Estimation of Ionic Media Effects on Solution Equilibria. Part 1. Calculation of the Interaction Parameters in the Molar and Molal Scales at 25°C, Fluid Phase Equil. 121, 85–98 (1996).

    CAS  Google Scholar 

  10. G. Borge, N. Etxebarria, L. A. Fernandez, M. A. Olazábal, and J. M. Madariaga, Development of a Modified Bromley's Methodology (MBM) for the Estimation of Ionic Media Effects on Solution Equilibria. Part 2. Correlation of the Molar and Molal Interaction Parameters with the Charge and Crystal Radii of the Ions, Fluid Phase Equil. 121, 99–109 (1996).

    CAS  Google Scholar 

  11. Y. Belaustegui, Elimination of Fe(III), Zn(II), Cu(II) and Cd(II) in Solutions with High HCl Concentrations by Ionic Exchange (Ph.D Thesis, UPV/EHU, Leioa, Spain, 1995).

  12. J. C. Raposo, J. Sanz, O. Zuloaga, M. A. Olazábal, and J. M. Madariaga, The Thermodynamic Model of Inorganic Arsenic Species in Aqueous Solutions. Potentiometric Study of the Hydrolytic Equilibrium of Arsenic Acid, Talanta 57, 849–857 (2002).

    Article  CAS  Google Scholar 

  13. G. H. Khoe and R. G. Robins, The Complexation of Iron(III) with Sulfate, Phosphate or Arsenate Ion Sodium Nitrate Medium at 25∘C, J. Chem. Soc. Dalton Trans: Inorg. Chem. 8, 2015–2021 (1998).

    Google Scholar 

  14. E. Bishop, Indicators (Pergamon Press, Oxford, Great Britain, 1972).

    Google Scholar 

  15. G. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis (6th de Longman, London, Great Britain, 2000).

    Google Scholar 

  16. G. Gran, Determination of the Final Point in the Potentiometric Titrations II, Analyst 77, 661–671 (1952).

    Article  CAS  Google Scholar 

  17. F. J. C. Rossotti and H. Rossotti, The Determination of Stability Constants (McGraw-Hill, New York, 1961, 127).

    Google Scholar 

  18. J. C. Raposo, J. Sanz, O. Zuloaga, M. A. Olazabal, and J. M. Madariaga, The Thermodynamic Model of Inorganic Arsenic Species in Aqueous Solutions. Potentiometric Study of the Hydrolytic Equilibrium of Arsenious Acid, J. Solution Chem. 32, 253–264 (2003).

    Article  CAS  Google Scholar 

  19. N. Ingri and L. G. Sillén, High Speed Computers as Supplement to Graphical Methods II. Some Computer Programs for Studies of Complex Formation Equilibria, Acta Chem. Scand. 16, 173–191 (1962).

    CAS  Google Scholar 

  20. Excel 2000, Microsoft Corporation, Redmond. WA, 2001.

  21. R. Cazallas, M. J. Citores, N. Etxebarria, L. A. Fernández, and J. M. Madariaga, SPECA a Program for the Calculation of Thermodynamic Equilibrium Constants from Spectrophotometric Data, Talanta 41, 1637–1644 (1994).

    Article  CAS  Google Scholar 

  22. J. Ferre and F. X. Rius, Equivalence Between Selectivity and Variance Inflation Factors in Multicomponent Analysis, Quím. Anal. 15, 259–262 (1996).

    CAS  Google Scholar 

  23. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (John Wiley & Sons, New York, USA, 1976).

    Google Scholar 

  24. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (2nd Ed., John Wiley and Sons, New York, USA, 1963).

    Google Scholar 

  25. N. Miller and J. Wilkins, Infrared Spectra and Characteristic Frequencies of Inorganic Ions, Anal. Chem. 24, 1253–1294 (1952).

    CAS  Google Scholar 

  26. J. C. Raposo, O. Zuloaga, M. A. Olazábal, and J. M. Madariaga, Study of the Precipitation Equilibria of Arsenate Anion with Calcium and Magnesium in Sodium Perchlorate at 25∘C, Appl. Geochem. 19, 855–862 (2004).

    Article  CAS  Google Scholar 

  27. I. Puigdomenech, MEDUSA, Make Equilibrium Diagrams using Sophisticated Algorithms (Department of Inorganic Chemistry, Royal Institute of Technology, S-100 44, Stockholm, Sweden, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Raposo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raposo, J.C., Olazábal, M.A. & Madariaga, J.M. Complexation and Precipitation of Arsenate and Iron Species in Sodium Perchlorate Solutions at 25C. J Solution Chem 35, 79–94 (2006). https://doi.org/10.1007/s10953-006-8940-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-8940-5

KEY WORDS

Navigation