Skip to main content
Log in

New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for solving this problem, which make a number of a-priori sequencing decisions in a pre-processing phase while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of extra precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We obtain new competitive results for expected-makespan minimization on representative datasets, which are significantly better than those obtained by the existing algorithms when the variability in the activity durations is medium to high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bahar, J., & Crandall, K. (1990). Systematic risk management approach for construction projects. Journal of Construction Engineering and Management, 116, 533–546.

    Article  Google Scholar 

  • Al Fawzan, M., & Haouari, M. (2005). A bi-objective model for robust resource-constrained project scheduling. International Journal of Production Economics, 96, 175–187.

    Article  Google Scholar 

  • Baker, K., & Trietsch, D. (2009). Principles of sequencing and scheduling. New York: Wiley.

    Book  Google Scholar 

  • Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of Scheduling, 10(3), 153–166.

    Article  Google Scholar 

  • Ballestín, F., & Leus, R. (2009). Resource-constrained project scheduling for timely project completion with stochastic activity durations. Production and Operations Management, 18, 459–474.

    Article  Google Scholar 

  • Blazewicz, J., Lenstra, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 5, 11–24.

    Article  Google Scholar 

  • Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch-and-bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 107, 272–288.

    Article  Google Scholar 

  • Chapman, C., & Ward, S. (2000). Estimation and evaluation of uncertainty: a minimalist first pass approach. International Journal of Project Management, 18, 369–383.

    Article  Google Scholar 

  • Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering, 55, 183–194.

    Article  Google Scholar 

  • Dawood, N. (1998). Estimating project and activity duration: a risk management approach using network analysis. Construction Management and Economics, 16, 41–48.

    Article  Google Scholar 

  • Demeulemeester, E., & Herroelen, W. (1997). New benchmark results for the resource-constrained project scheduling problem. Management Science, 43, 1485–1492.

    Article  Google Scholar 

  • Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: a research handbook. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Drexl, A. (1991). Scheduling of project networks by job assignment. Management Science, 37, 1590–1602.

    Article  Google Scholar 

  • Elmaghraby, S. (1977). Activity networks. New York: Wiley-Interscience.

    Google Scholar 

  • Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1996). The role of the non-anticipativity constraint in commercial software for stochastic project scheduling. Computers and Industrial Engineering, 31, 233–236.

    Article  Google Scholar 

  • Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1998). Understanding simulation solutions to resource constrained project scheduling problems with stochastic task durations. Engineering Management Journal, 10, 5–13.

    Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Golenko-Ginzburg, D., & Gonik, D. (1997). Stochastic network project scheduling with non-consumable limited resources. International Journal of Production Economics, 48, 29–37.

    Article  Google Scholar 

  • Graham, R. (1966). Bounds on multiprocessing timing anomalies. Bell System Technical Journal, 45, 1563–1581.

    Google Scholar 

  • Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics, 45, 733–750.

    Article  Google Scholar 

  • Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 127, 394–407.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.

    Article  Google Scholar 

  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty, survey and research potentials. European Journal of Operational Research, 165(8), 289–306.

    Article  Google Scholar 

  • Holland, H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Igelmund, G., & Radermacher, F. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13, 1–28.

    Article  Google Scholar 

  • Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations Management, 14, 172–192.

    Article  Google Scholar 

  • Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90, 320–333.

    Article  Google Scholar 

  • Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis. In J. Weglarz (Ed.), Project scheduling. Recent models, algorithms and applications (pp. 147–178). Dordrecht: Kluwer.

    Google Scholar 

  • Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174, 23–37.

    Article  Google Scholar 

  • Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project scheduling. Omega, 29(3), 249–272.

    Article  Google Scholar 

  • Kolisch, R., & Sprecher, A. (1996). PSPLIB—a project scheduling problem library. European Journal of Operational Research, 96, 205–216.

    Article  Google Scholar 

  • Lambrechts, O. 2007. Robust project scheduling subject to resource breakdowns. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium.

  • Leus, R., & Herroelen, W. (2004). Stability and resource allocation in project planning. IIE Transactions, 36(7), 667–682.

    Article  Google Scholar 

  • Li, K., & Willis, R. (1992). An iterative scheduling technique for resource-constrained project scheduling. European Journal of Operational Research, 56, 370–379.

    Article  Google Scholar 

  • Möhring, R. (2000). Scheduling under uncertainty: optimizing against a randomizing adversary. Lecture Notes in Computer Science, 1913/2000, 651–670.

    Google Scholar 

  • Möhring, R., Radermacher, F., & Weiss, G. (1984). Stochastic scheduling problems I – general strategies. ZOR. Zeitschrift für Operations Research, 28, 193–260.

    Google Scholar 

  • Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Project scheduling with time windows and scarce resources. Berlin: Springer.

    Google Scholar 

  • Özdamar, L., & Ulusoy, G. (1996). A note on an iterative forward/backward scheduling technique with reference to a procedure by Li and Willis. European Journal of Operational Research, 89, 400–407.

    Article  Google Scholar 

  • Patterson, J. (1984). A comparison of exact procedures for solving the multiple constrained resource project scheduling problem. Management Science, 30, 854–867.

    Article  Google Scholar 

  • Pet-Edwards, J., Selim, B., Armacost, R. L., & Fernandez, A. (1998). Minimizing risk in stochastic resource-constrained project scheduling. In: Proceedings of INFORMS fall meeting, Seattle, USA.

  • Pinedo, M. (2008). Scheduling. Theory, algorithms, and systems. Berlin: Springer.

    Google Scholar 

  • Saliby, E. (1990). Descriptive sampling: a better approach to Monte Carlo simulation. Journal of the Operational Research Society, 41, 1133–1142.

    Google Scholar 

  • Schatteman, D., Herroelen, W., Van de Vonder, S., & Boone, A. (2008). A methodology for integrated risk management and proactive scheduling of construction projects. Journal of Construction Engineering and Management, 134, 885–893.

    Article  Google Scholar 

  • Shtub, A., Bard, J., & Globerson, S. (2005). Project management. Processes, methodologies, and Economics. New York: Pearson, Prentice Hall.

    Google Scholar 

  • Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46, 710–723.

    Article  Google Scholar 

  • Stork, F. 2001. Stochastic resource-constrained project scheduling. Ph.D. thesis, Technische Universität Berlin.

  • Tsai, Y. W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochastic resource-constrained projects. European Journal of Operational Research, 111, 129–141.

    Article  Google Scholar 

  • Valls, V., Ballestín, F., & Quintanilla, S. (2005). Justification and RCPSP: a technique that pays. European Journal of Operational Research, 165, 375–386.

    Article  Google Scholar 

  • Valls, V., Ballestín, F., & Quintanilla, S. (2008). Hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185, 495–508.

    Article  Google Scholar 

  • Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97, 227–240.

    Article  Google Scholar 

  • Vepsalainen, A., & Morton, T. (1987). Priority rules for job shops with weighted tardines costs. Management Science, 33, 1035–1047.

    Article  Google Scholar 

  • Wang, J. (2004). A fuzzy robust scheduling approach for product development projects. European Journal of Operational Research, 152, 180–194.

    Article  Google Scholar 

  • Wu, S. D., Byeon, E. S., & Storer, R. H. (1999). A graph-theoretic decomposition of job shop scheduling to achieve scheduling robustness. Operations Research, 47(1), 113–124.

    Article  Google Scholar 

  • Xu, N., McKee, S. A., Nozick, L. K., & Ufomata, R. (2008). Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem. Computers & Operations Research, 35, 3284–3297.

    Article  Google Scholar 

  • Yu, G., & Qi, X. (2004). Disruption management—framework, models and applications. Singapore: World Scientific.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Leus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashtiani, B., Leus, R. & Aryanezhad, MB. New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing. J Sched 14, 157–171 (2011). https://doi.org/10.1007/s10951-009-0143-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-009-0143-7

Navigation