Skip to main content
Log in

Development of local magnitude scale for the Northern Punjab, Pakistan

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We developed a local magnitude scale for the Northern Punjab (Potwar Plateau and Salt Range), using seismic data of CES (Centre for Earthquake Studies). The region is tectonically stable, but surrounded by active geological structures (i.e., Main Boundary Thrust, Sulaiman Range, and Jhelum Fault). The imparted stresses adjust both seismically (moderate to small magnitude earthquakes) and aseismically in decollement. Previously, Southern California magnitude scale was being used to determine local magnitude for compilation of seismic catalog. Difference in geology and tectonics between Southern California and Northern Punjab may lead to systematic errors in hazard assessment based on this catalog. To address this problem, we selected 231 seismic events for a period of 07 years with ML 2.0 and above, that correspond to 2800 records on 21 seismic stations. We chose data of seismic events with hypocentral distance less than 600 km and recorded on five stations at least. We then inverted the synthetic Wood-Anderson amplitudes of selected data for station and distance corrections. Accordingly, the new magnitude scale for Northern Punjab is given by the following: ML = logA + 0.869log(r) + 0.00115(r) − 1.53, where A is the amplitude in nanometers on synthetic Wood-Anderson seismograph and r is the hypocentral distance in kilometers. We observed lower attenuation of seismic waves in our study area as compared to Southern California. Lower standard deviation (i.e., reduction in variance to 45.4% ) in magnitude residuals shows that there is less deviation for newly developed scale as compared to that of Southern California scale. Values of station correction factors for different stations of local network vary between − 0.5 to + 0.5, which suggest variation in station site effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alsaker A, Kvamme L, Hansen R, Dahle A, Bungum H (1991) The M L scale in Norway. Bull Seismol Soc Am 81(2):379–398

    Google Scholar 

  • Argand E (1922) La tectonique de l’Asie. Conférence faite á Bruxelles, le 10 août 1922. In: Rep. Sess.-Int. Geol. Congr. 13, pp 170-372

  • Bakun WH (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull Seismol Soc Am 74(2):439–458

    Google Scholar 

  • Bakun WH, Joyner WB (1984) The M L scale in central California. Bull Seismol Soc Am 74(5):1827–1843

    Google Scholar 

  • Banerjee P, Bürgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29(13):301–304

    Article  Google Scholar 

  • Banks C, Warburton J (1986) ‘Passive-roof’ duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J Struct Geol 8(3-4):229–237

    Article  Google Scholar 

  • Bendick R, McClusky S, Bilham R, Asfaw L, Klemperer S (2006) Distributed Nubia—Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophys J Int 165(1):303–310

    Article  Google Scholar 

  • Bernard M, Shen-Tu B, Holt W, Davis D (2000) Kinematics of active deformation in the Sulaiman Lobe and Range, Pakistan. J Geophys Res: Solid Earth 105(B6):13,253–13,279

    Article  Google Scholar 

  • Bilham R (2006) Dangerous tectonics, fragile buildings, and tough decisions. Science 311 (5769):1873–1875

    Article  Google Scholar 

  • Bindi D, Spallarossa D, Eva C, Cattaneo M (2005) Local and duration magnitudes in northwestern Italy, and seismic moment versus magnitude relationships. Bull Seismol Soc Am 95(2):592–604

    Article  Google Scholar 

  • Blisniuk PM, Sonder LJ, Lillie RJ (1998) Foreland normal fault control on northwest Himalayan thrust front development. Tectonics 17(5):766–779

    Article  Google Scholar 

  • Bobbio A, Vassallo M, Festa G (2009) A local magnitude scale for Southern Italy. Bull Seismol Soc Am 99(4):2461–2470

    Article  Google Scholar 

  • Booth DC (2007) An improved UK local magnitude scale from analysis of shear and Lg-wave amplitudes. Geophys J Int 169(2):593–601

    Article  Google Scholar 

  • Bormann P, Baumbach M, Bock G, Grosser H, Choy GL, Boatwright J (2002) Seismic sources and source parameters. IASPEI New Manual of Seismological Observatory Practice 1:1–94

    Google Scholar 

  • Bragato PL, Tento A (2005) Local magnitude in Northeastern Italy. Bull Seismol Soc Am 95 (2):579–591

    Article  Google Scholar 

  • Ebel JE (1982) ML Measurements for northeastern United States earthquakes. Bull Seismol Soc Am 72(4):1367–1378

    Google Scholar 

  • Farah A, Mirza MA, Ahmad MA, Butt MH (1977) Gravity field of the buried shield in the Punjab Plain, Pakistan. Geol Soc Am Bull 88(8):1147–1155

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley Interscience, New York

    Google Scholar 

  • Gansser A (1981) The geodynamic history of the Himalaya. Zagros Hindu Kush Himalaya Geodynamic Evolution, pp 111–121

  • Ghosh A, Newman AV, Thomas AM, Farmer GT (2008) Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys Res Lett 35(1):L01301

    Article  Google Scholar 

  • Gutenberg Bu, Richter CF (1954) Seismicity of the earth and related phenomena. Princeton (NJ)

  • Hadley DM, Helmberger DV, Orcutt JA (1982) Peak acceleration scaling studies. Bull Seismol Soc Am 72(3):959– 979

    Google Scholar 

  • Haines AJ (1981) A local magnitude scale for New Zealand earthquakes. Bull Seismol Soc Am 71 (1):275–294

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350

    Article  Google Scholar 

  • Havskov J, Ottemöller L (2010) Location. In: Routine data processing in earthquake seismology, Springer, pp 101–149

  • Hofstetter R, Beyth M (2003) The Afar Depression: interpretation of the 1960–2000 earthquakes. Geophys J Int 155(2):715–732

    Article  Google Scholar 

  • Hutton L, Boore DM (1987) The ML scale in Southern California. Bull Seismol Soc Am 77 (6):2074–2094

    Google Scholar 

  • Jennings PC, Kanamori H (1983) Effect of distance on local magnitudes found from strong-motion records. Bull Seismol Soc Am 73(1):265–280

    Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095

    Google Scholar 

  • Kazmi AH, Rana RA (1982) Tectonic map of Pakistan, 1:2,000,000. Geological Survey of Pakistan, Quetta

  • Keir D, Stuart G, Jackson A, Ayele A (2006) Local earthquake magnitude scale and seismicity rate for the Ethiopian rift. Bull Seismol Soc Am 96(6):2221–2230

    Article  Google Scholar 

  • Kılıç T, Ottemöller L, Havskov J, Yanık K, Kılıçarslan Ö, Alver F, Özyazıcıoğlu M (2017) Local magnitude scale for earthquakes in Turkey. J Seismol 21(1):35–46

    Article  Google Scholar 

  • Kim WY (1998) The ML scale in eastern North America. Bull Seismol Soc Am 88(4):935–951

    Google Scholar 

  • Kiratzi A, Papazachos B (1984) Magnitude scales for earthquakes in Greece. Bull Seismol Soc Am 74(3):969–985

    Google Scholar 

  • Langston CA, Brazier R, Nyblade AA, Owens TJ (1998) Local magnitude scale and seismicity rate for Tanzania, East Africa. Bull Seismol Soc Am 88(3):712–721

    Google Scholar 

  • Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83(B11):5331–5354

    Article  Google Scholar 

  • Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst Univ Tokyo 40:125– 173

    Google Scholar 

  • Molnar P (1984) Structure and tectonics of the Himalaya: constraints and implications of geophysical data. Annu Rev Earth Planet Sci 12(1):489–516

    Article  Google Scholar 

  • Nguyen LM, Lin TL, Wu YM, Huang BS, Chang CH, Huang WG, Le TS, Dinh VT (2011) The first ML scale for North of Vietnam. J Asian Earth Sci 40(1):279–286

  • Powell CM, Conaghan P (1973) Plate tectonics and the Himalayas. Earth Planet Sci Lett 20 (1):1–12

    Article  Google Scholar 

  • Pujol J (2003) Determination of a local magnitude scale: a generalized inverse solution. Bull Seismol Soc Am 93(6):2758–2761

    Article  Google Scholar 

  • Quittmeyer RC, Farah A, Jacob KH (1979) The seismicity of Pakistan and its relation to surface faults. Geodynamics of Pakistan, pp 271–284

  • Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32

    Google Scholar 

  • Ristau J, Rogers GC, Cassidy JF (2005) Moment magnitude–local magnitude calibration for earthquakes in Western Canada. Bull Seismol Soc Am 95(5):1994–2000

    Article  Google Scholar 

  • Satyabala SP, Yang Z, Bilham R (2012) Stick–slip advance of the Kohat Plateau in Pakistan. Nat Geosci 5(2):147–150

    Article  Google Scholar 

  • Saunders I, Ottemöller L, Brandt MB, Fourie CJ (2013) Calibration of an m L scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009. J Seismol 17(2):437–451

    Article  Google Scholar 

  • Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11(5):925–943

    Article  Google Scholar 

  • Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58(1):399–415

    Google Scholar 

  • Schorlemmer D, Wiemer S (2005) Earth science: microseismicity data forecast rupture area. Nature 434(7037):1086

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res 109(B12)

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  Google Scholar 

  • Seeber L, Armbruster J (1979) Seismicity of the Hazara arc in northern Pakistan: decollement vs. basement faulting. Geodynamics of Pakistan 131:142

    Google Scholar 

  • Seeber L, Armbruster JG, Quittmeyer RC (1981) Seismicity and continental subduction in the Himalayan arc. Zagros Hindu Kush Himalaya Geodynamic Evolution, Geodyn Ser 3:215–242

    Article  Google Scholar 

  • Shoja-Taheri J, Naserieh S, Ghafoorian-Nasab AH (2008) An ML scale in northeastern Iran. Bull Seismol Soc Am 98(4):1975–1982

    Article  Google Scholar 

  • Slejko D, Rebez A (2002) Probabilistic seismic hazard assessment and deterministic ground shaking scenarios for Vittorio Veneto (NE Italy). Boll Geofis Teor Appl 43:263–280

    Google Scholar 

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13(1):89–109

    Article  Google Scholar 

  • Takeo M, Abe K (1981) Local magnitude determination from near-field accelerograms. Zisin, J Seism Soc Jap 34:495–504

    Google Scholar 

  • Treloar PJ, Coward MP, Harris NB (1992) Himalayan-tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precambrian Res 55(1-4):571–587

    Article  Google Scholar 

  • Urbancic T, Trifu C, Long J, Young R (1992) Space-time correlations of b values with stress release. Pure Appl Geophys 139(3-4):449–462

    Article  Google Scholar 

  • Uski M, Tuppurainen A (1996) A new local magnitude scale for the Finnish seismic network. Tectonophysics 261(1-3):23–37

    Article  Google Scholar 

  • Warren NW, Latham GV (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75(23):4455–4464

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. In: Advances in Geophysics, vol 45, Elsevier, pp 259–V

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Int 31(4):341– 359

    Article  Google Scholar 

  • Wyss M, Sammis CG, Nadeau RM, Wiemer S (2004) Fractal dimension and b-value on creeping and locked patches of the San Andreas fault near Parkfield, California. Bull Seismol Soc Am 94 (2):410–421

    Article  Google Scholar 

  • Yeats RS, Khan SH, Akhtar M (1984) Late quaternary deformation of the Salt Range of Pakistan. Geol Soc Am Bull 95(8):958–966

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280

    Article  Google Scholar 

Download references

Acknowledgments

We received significant help from Mr. Muhammad Tahir Iqbal in improving geological content of area, Mr. Bilal Saif regarding Cartography and Mr. Saleem Iqbal for script writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed Mushtaq.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Error in location

Appendix: Error in location

The appendix represents error in location (i.e., latitude and longitude). Seisan software has been used for earthquake location, with Hypo71 routine. We use the 2D velocity model that developed for Southern California. In location, if azimuthal coverage is poor, i.e., less than 100, then we additionally use seismic stations from other networks. In most of cases, stations of Pakistan Meteorological Department(PMD) are added, other than PMD stations, we also use data of USGS stations in certain cases for improvement in location. Error in latitude and longitude of seismic events used in this study are shown in Figs. 13 and 14. Average value of error in latitude and longitude for our network is 8 and 10 km respectively.

Fig. 13
figure 13

Histogram representation of error in latitude of earthquake location. Dark and light vertical is average and one standard deviation error respectively

Fig. 14
figure 14

Histogram representation of error in longitude of earthquake location. Dark and light vertical is average and one standard deviation error respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushtaq, M.N., Tahir, M., Shah, M.A. et al. Development of local magnitude scale for the Northern Punjab, Pakistan. J Seismol 23, 403–416 (2019). https://doi.org/10.1007/s10950-018-09813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-018-09813-y

Keywords

Navigation