Skip to main content
Log in

The contribution of scattering to near-surface attenuation

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The rapid decrease of the acceleration spectral amplitude at high frequencies has widely been modeled by the spectral decay factor kappa (κ). Usually, the path-corrected component of κ, often called κ0, is believed to be a local and frequency-independent site characteristic, in turn representing attenuation related to waves propagating vertically through the very shallow layers beneath the study site. Despite the known relevance of κ0 in a wide range of seismological applications, most methods for its calculation do not fully consider the influence of the scattering component. To account for the scattering component, we present a summary of statistical observations of the seismic wavefield at sites of the Swiss seismic networks. The intrinsic properties of the wavefield show a clear dependency on the local shallow subsoil conditions with differences in the structural heterogeneity of the shallow subsoil layers producing different scattering regimes. Such deviations from the ballistic behavior (i.e., direct waves that sample only distinct directions) are indicative for local structural heterogeneities and the associated level of scatter. Albeit the attenuation term related to scattering depends nonlinearly on the intrinsic term, the results indicate that the commonly used explanation for the high-frequency decay spectrum might not be appropriate but involving the amount of scattering might allow better constrained estimates of κ0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abercrombie RE (1997) Near-surface attenuation and site effects from comparison of surface and deep borehole recordings. Bull Seismol Soc Am 87:731–744

    Google Scholar 

  • Abercrombie RE (1998) A summary of attenuation measurements from borehole recordings of earthquakes: the 10 Hz transition problem. Pure Appl Geophys 153:475–487

    Article  Google Scholar 

  • Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Int 21:50–60

    Article  Google Scholar 

  • Anderson JG (1991) A preliminary descriptive model for the distance dependence of the spectral decay parameter in southern California. Bull Seismol Soc Am 81:2186–2193

    Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993

    Google Scholar 

  • Aoi S, Kunugi T, Fujiwara H (2004) Strong-motion seismograph network operated by NIED: K-NET and KiK-net. J Japan Assoc Earthq Eng 4:65–74

    Google Scholar 

  • Aster RC, Shearer PM (1991) High-frequency borehole seismograms recorded in the san Jcinto fault zone, Southern California part 2. Attenuation and site effects. Bull Seismol Soc Am 81:1081–1100

    Google Scholar 

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96:2181–2205

    Article  Google Scholar 

  • Bashan A, Bartsch R, Kantelhardt JW, Havlin S (2008) Comparison of detrending methods for fluctuation analysis. Physica A Stat Mech Appl 387:5080–5090

    Article  Google Scholar 

  • Bertero, M., P. Boccacci (1998). Introduction to inverse problems in imaging. CRC press, Bristol, UK.

  • Bethmann F, Deichmann N, Mai PM (2012) Seismic wave attenuation from borehole and surface records in the top 2.5 km beneath the city of Basel, Switzerland. Geophys J Int 190:1257–1270

    Article  Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–676

    Article  Google Scholar 

  • Boore D (2005) On pads and filters: processing strong motion data. Bull Seismol Soc Am 95:745–750

    Article  Google Scholar 

  • Boore, D. M., K. W. Campbell (2017). Adjusting Central and eastern North America ground-motion intensity measures between sites with different reference-rock site conditions, manuscript in press, doi: 10.1785/0120160208.

  • Boore DM, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seismol Soc Am 87:327–341

    Google Scholar 

  • Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bull Seismol Soc Am 93:1012–1033

    Article  Google Scholar 

  • Campbell KW (2009) Estimates of shear-wave Q and κ0 for unconsolidated and semiconsolidated sediments in eastern North America. Bull Seismol Soc Am 99:2365–2392

    Article  Google Scholar 

  • Campbell, K. W., Y. M. A. Hashash, B. Kim, A. R. Kottke, E. M. Rathje, W. J. Silva, J. R. Stewart (2014). Reference-rock site conditions for Central and Eastern North America. Part II: Attenuation (kappa) definition, Report PEER 2014–12, Pacific Earthquake Engineering Research Center, Berkeley, USA.

  • Carpentier, S. F. A. (2007). On the estimation of stochastic parameters from deep seismic reflection data and its use in delineating lower crustal structure. PhD thesis, Utrecht University, Netherlands.

  • Caserta A, Consolini G, De Michelis P (2007) Statistical features of the seismic noise field. Stud Geophys Geod 51:255–266

    Article  Google Scholar 

  • Chandler AM, Lam NTK, Tsang HH (2006) Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn Earthq Eng 26:1004–1014

    Article  Google Scholar 

  • Chapman MC, Talwani P, Cannon RC (2003) Ground-motion attenuation in the Atlantic coastal plain near Charleston, South Carolina. Bull Seismol Soc Am 93:998–1011

    Article  Google Scholar 

  • Charrette, E. E. (1991). Elastic wave scattering in laterally inhomogeneous media, PhD thesis, Massachusetts Institute of Technology, Boston, USA.

  • Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65:041107

    Article  Google Scholar 

  • Cormier VF (1982) The effect of attenuation on seismic body waves. Bull Seismol Soc Am 72:169–200

    Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to Central Europe and rock sites. J Seismol 10:137–156

    Article  Google Scholar 

  • Dainty AM (1981) A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys Res Lett 8:1126–1128

    Article  Google Scholar 

  • Diehl T, Deichmann N, Clinton J, Kästli P, Cauzzi C, Kraft T, Behr Y, Edwards B, Guilhem A, Korger E, Hobiger M, Haslinger F, Fäh D, Wiemer S (2015) Earthquakes in Switzerland and surrounding regions during 2014. Swiss J Geosci 108:425–443

    Article  Google Scholar 

  • Douglas J, Bertil D, Roullé A, Dominique P, Jousset P (2006) A preliminary investigation of strong-motion data from the French Antilles. J Seismol 10:271–299

    Article  Google Scholar 

  • Douglas J, Gehl P, Bonilla LF, Scotti O, Régnier J, Duval AM, Bertrand E (2009) Making the most of available site information for empirical ground-motion prediction. Bull Seismol Soc Am 99:1502–1520

    Article  Google Scholar 

  • Douglas J, Gehl P, Bonilla LF, Gélis C (2010) A κ model for mainland France. Pure Appl Geophys 167:1303–1315

    Article  Google Scholar 

  • Edwards B, Fäh D, Giardini D (2011) Attenuation of seismic shear wave energy in Switzerland. Geophys J Int 185:967–984

    Article  Google Scholar 

  • Edwards B, Ktenidou OJ, Cotton F, Abrahamson N, Van Houtte C, Fäh D (2015) Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock sites. Geophys J Int 202:1627–1645

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560

    Article  Google Scholar 

  • Faccioli, E., A. Tagliani (1987). Attenuation analysis of high frequency seismic waves in randomly heterogeneous rock media by finite difference simulations. In: Ground Motion and Engineering Seismology, A. S. Cakmak (ed.), 325–337.

  • Faccioli E, Tagliani A, Paolucci R (1989) Effects of wave propagation in random earth media on the seismic radiation spectrum. In: Structural dynamics and soil-structure interaction. Proc. 4th int. Conf. on Soil Dyn. and Earthq. Eng 1:197–208

    Google Scholar 

  • Fernández AI, Castro RR, Huerta CI (2010) The spectral decay parameter kappa in northeastern Sonora, Mexico. Bull Seismol Soc Am 100:196–206

    Article  Google Scholar 

  • Frankel A (1982) The effects of attenuation and site response on the spectra of microearthquakes in the northeastern Caribbean. Bull Seismol Soc Am 72:1379–1402

    Google Scholar 

  • Frankel A, Clayton RW (1986) Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J Geophys Res 91:6465–6489

    Article  Google Scholar 

  • Fu L, Li XJ (2016) The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and adjacent regions. Bull Seismol Soc Am 106

  • Gentili S, Franceschina G (2011) High frequency attenuation of shear waves in the southeastern alps and northern Dinarides. Geophys J Int 185:1393–1416

    Article  Google Scholar 

  • Gibson B (1991) Analysis of lateral coherency in wide-angle seismic images of heterogeneous targets. J Geophys Res 96:261–273

    Google Scholar 

  • Goff J, Jordan T (1988) Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J Geophys Res 93:589–608

    Google Scholar 

  • Hanks TC (1982) fmax. Bull Seismol Soc Am 72:1867–1879

    Google Scholar 

  • Hashash YM, Kottke AR, Stewart JP, Campbell KW, Kim B, Moss C, Nikolaou S, Rathje EM, Silva WJ (2014) Reference rock site condition for central and eastern North America. Bull Seismol Soc Am 104(2):684–701

  • Hillers G, Ben-Zion Y, Landes M, Campillo M (2013) Interaction of microseisms with crustal heterogeneity: a case study from the San Jacinto fault zone area. Geochem Geophys Geosys 14:2182–2197

    Article  Google Scholar 

  • Holliger K, Carbonell R, Levander A (1992) Sensitivity of the lateral correlation function in deep seimic reflection data. Geophys Res Lett 19:2263–2266

    Article  Google Scholar 

  • Hough SE, Anderson JG (1988) High-frequency spectra observed at Anza, California: implications for Q structure. Bull Seismol Soc Am 78:692–707

    Google Scholar 

  • Hough SE, Anderson JG, Brune J, Vernon F, Berger J, Fletcher J, Haar L, Hanks T, Baker L (1988) Attenuation near Anza, California. Bull Seismol Soc Am 78:672–691

    Google Scholar 

  • Hurich C (1996) Statistical description of seismic reflection wavefields: a step towards quantitative interpretation of deep seismic reflection profiles. Geophys J Int 125:719–728

    Article  Google Scholar 

  • Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Amer Soc Civil Eng 116:770–808

    Google Scholar 

  • Husen S, Kissling E, von Deschwanden A (2012) Induced seismicity during the construction of the Gotthard Base tunnel, Switzerland: hypocenter locations and source dimensions. J Seismol 16:195–213

    Article  Google Scholar 

  • Jin A, Mayeda K, Adams D, Aki K (1994) Separation of intrinsic and scattering attenuation in southern California using TERRAscope data. J Geophys Res 99:835–848

    Google Scholar 

  • Kanamori H (1967) Spectrum of short-period core phases in relation to the attenuation in the mantle. J Geophys Res 72:2181–2186

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A Stat Mech Appl 316:87–114

    Article  Google Scholar 

  • Kilb D, Biasi G, Anderson J, Brune J, Peng Z, Vernon FL (2012) A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data. Bull Seismol Soc Am 102:284–300

    Article  Google Scholar 

  • Kinoshita S (2008) Deep-borehole-measured QP and QS attenuation for two Kanto sediment layer sites. Bull Seismol Soc Am 98:463–468

    Article  Google Scholar 

  • Knopoff L (1964) Q Rev Geophys Space Phys 2:625–660

    Article  Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241

    Google Scholar 

  • Ktenidou OJ, Gélis C, Bonilla LF (2013) A study on the variability of kappa (κ) in a borehole: implications of the computation process. Bull Seismol Soc Am 103:1048–1068

    Article  Google Scholar 

  • Ktenidou OJ, Cotton F, Abrahamson NA, Anderson JG (2014) Taxonomy of κ: a review of definitions and estimation approaches targeted to applications. Seismol Res Lett 85:135–146

    Article  Google Scholar 

  • Ktenidou OJ, Abrahamson NA, Drouet S, Cotton F (2015) Understanding the physics of kappa (κ): insights from a downhole array. Geophys J Int 203:678–691

    Article  Google Scholar 

  • Lai TS, Mittal H, Chao WA, Wu YM (2016) A study on kappa value in Taiwan using borehole and surface seismic Array. Bull Seismol Soc Am 106:1509–1517

    Article  Google Scholar 

  • Laurendeau, A., P. Y. Bard, F. Hollender, V. Perron, L. Foundotos, O. J. Ktenidou, B. Hernandez (2016). Deviation of consistent hard rock (1000 < vs < 3000 m/s) GMPEs from surface and downhole recordings: Analysis of KiK-net data, Bull. Earthq. Eng., accepted manuscript.

  • Lavallée, D., D. Schertzer, S. Lovejoy (1991). Non-Linear Variability in Geophysics, Scaling and Fractals, Kluwer Academic Publishers, Dordrecht, Netherlands.

  • Lay, T., T. C. Wallace (1995). Modern global seismology. 521 pp., Academic press, San Diego, USA.

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  • Mayor J, Margerin L, Calvet M (2014) Sensitivity of coda waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples. Geophys J Int 197:1117–1137

    Article  Google Scholar 

  • Mehta K, Snieder R, Graizer V (2007a) Extraction of near-surface properties for a lossy layered medium using the propagator matrix. Geophys J Int 169:271–280

    Article  Google Scholar 

  • Mehta K, Snieder R, Graizer V (2007b) Downhole receiver function: a case study. Bull Seismol Soc Am 97:1396–1403

    Article  Google Scholar 

  • Menke W, Chen R (1984) Numerical studies of the coda falloff rate of multiply scattered waves in randomly layered media. Bull Seismol Soc Am 74:1605–1621

    Google Scholar 

  • O’Connell DR (1999) Replication of apparent nonlinear seismic response with linear wave propagation models. Science 283:2045–2050

    Article  Google Scholar 

  • Parolai S, Bindi D (2004) Influence of soil-layer properties on k evaluation. Bull Seismol Soc Am 94:349–356

    Article  Google Scholar 

  • Parolai S, Bindi D, Ansal A, Kurtulus A, Strollo A, Zschau J (2010) Determination of shallow S-wave attenuation by down-hole waveform deconvolution: a case study in Istanbul (Turkey). Geophys J Int 181:1147–1158

    Google Scholar 

  • Parolai S, Bindi D, Pilz M (2015) k0: the role of intrinsic and scattering attenuation. Bull Seismol Soc Am 105:1049–1052

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170

    Article  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685

    Article  Google Scholar 

  • Pilz M, Parolai S (2014) Statistical properties of the seismic noise field: influence of soil heterogeneities. Geophys J Int 199:430–440

    Article  Google Scholar 

  • Poggi V, Edwards B, Fäh D (2013) Reference S-wave velocity profile and attenuation models for ground-motion prediction equations: application to Japan. Bull Seismol Soc Am 103:2645–2656

    Article  Google Scholar 

  • Purvance MD, Anderson JG (2003) A comprehensive study of the observed spectral decay in strong-motion accelerations recorded in Guerrero, Mexico. Bull Seismol Soc Am 93:600–611

    Article  Google Scholar 

  • Rebollar CJ (1990) Estimates of shallow attenuation of the San Miguel fault, Baja California. Bull Seismol Soc Am 80:743–746

    Google Scholar 

  • Richards PG, Menke W (1983) The apparent attenuation of a scattering medium. Bull Seismol Soc Am 73:1005–1022

    Google Scholar 

  • Risken H (1989) The Fokker-Planck equation. Appl Opt 28:4496–4497

    Google Scholar 

  • Safak E (1997) Models and methods to characterize site amplification from a pair of records. Earthq Spec 13:97–129

    Article  Google Scholar 

  • Sato H, Fehler M, Wu RS (2002) Scattering and attenuation of seismic waves in the lithosphere. Int Geophys Series 81:195–208

    Article  Google Scholar 

  • Sato H, Fehler M, Maeda T (2012) Attenuation of high-frequency seismic waves. In: Seismic wave propagation and scattering in the heterogeneous earth. Springer, Berlin, Heidelberg, pp 153–184

    Chapter  Google Scholar 

  • SED, Swiss Seismological Service at ETH Zurich (2015). The site characterization database for seismic stations in Switzerland, Zurich, Federal Institute for Technology. doi: 10.12686/sed-stationcharacterizationdb (retrieved on 13 January 2016 from http://stations.seismo.ethz.ch)

  • Shin, T. C. (1985). Lg and coda wave studies of Eastern Canada, PhD dissertation, Saint Louis University, Saint Louis, Missouri, USA.

  • Silva, W. J. (1997), Characteristics of vertical strong ground motion for applications to engineering design, Proc. FHWA/NCEER workshop on the national representation of seismic ground motion for new and existing highway facilities, Technical Report NCEER-97-0010, National Center for Earthquake Engineering Research, Buffalo, New York, USA.

  • Sivaji C, Nishizawa O, Kitagawa G, Fukushima Y (2002) A physical-model study of the statistics of seismic waveform fluctuations in random heterogeneous media. Geophys J Int 148:575–595

    Article  Google Scholar 

  • Tikhonov, A. N., V. I. Arsenin (1977). Solutions of ill-posed problems. Winston, Washington, DC, USA.

  • Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lett 68:41–57

    Article  Google Scholar 

  • Tsai CCP, Chen KC (2000) A model for the high-cut process of strong-motion accelerations in terms of distance, magnitude, and site condition: an example from the SMART 1 array, Lotung, Taiwan. Bull Seismol Soc Am 90:1535–1542

    Article  Google Scholar 

  • Van Houtte C, Drouet S, Cotton F (2011) Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull Seismol Soc Am 101:2926–2941

    Article  Google Scholar 

  • Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89:733–741

    Google Scholar 

  • Witt A, Malamud BD (2013) Quantification of long-range persistence in geophysical time series: conventional and benchmark-based improvement techniques. Surv Geophys 34:541–651

    Article  Google Scholar 

  • Wu RS, Aki k (1988) Seismic wave scattering in three-dimensionally heterogeneous earth. In: Scattering and attenuations of seismic waves. Birkhäuser, Basel, pp1–6

  • Zhang ZQ, Jones IP, Schriemer HP, Page JH, Weitz DA, Sheng P (1999) Wave transport in random media: the ballistic to diffusive transition. Phys Rev E 60:4843–4850

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their very constructive reviews. The records used and the site characterization data regarding the stations were provided by the Swiss Seismological Service, ETH Zürich. The research was funded at different stages by the Swiss Federal Nuclear Safety Inspectorate (ENSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pilz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilz, M., Fäh, D. The contribution of scattering to near-surface attenuation. J Seismol 21, 837–855 (2017). https://doi.org/10.1007/s10950-017-9638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-017-9638-4

Keywords

Navigation