Skip to main content
Log in

Earthquake focal mechanisms and stress inversion in the Irpinia Region (southern Italy)

  • Original article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The goal of this study was to estimate the stress field acting in the Irpinia Region, an area of southern Italy that has been struck in the past by destructive earthquakes and that is now characterized by low to moderate seismicity. The dataset are records of 2,352 aftershocks following the last strong event: the 23 November 1980 earthquake (M 6.9). The earthquakes were recorded at seven seismic stations, on average, and have been located using a three-dimensional (3D) P-wave velocity model and a probabilistic, non-linear, global search technique. The use of a 3D velocity model yielded a more stable estimation of take-off angles, a crucial parameter for focal mechanism computation. The earthquake focal mechanisms were computed from the P-wave first-motion polarity data using the FPFIT algorithm. Fault plane solutions show mostly normal component faulting (pure normal fault and normal fault with a strike-slip component). Only some fault plane solutions show strike-slip and reverse faulting. The stress field is estimated using the method proposed by Michael (J Geophys Res 92:357–368, 1987a) by inverting selected focal mechanisms, and the results show that the Irpinia Region is subjected to a NE–SW extension with horizontal σ 3 (plunge 0°, trend 230°) and subvertical σ 1 (plunge 80°, trend 320°), in agreement with the results derived from other stress indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanti M, Bontempo R, Cara P, Conte G, Di Bucci D, Lembo P, Pantaleone NA, Ventura R (2002) Carta Geologica d’Italia Interattiva. 1:100000, SGN, SSN, ANAS, 3 CD-ROM

  • Amato A, Montone P (1997) Present-day stress field and active tectonics in southern peninsular Italy. Geophys J Int 130:519–534. doi:10.1111/j.1365-246X.1997.tb05666.x

    Article  Google Scholar 

  • Amato A, Chiarabba C, Malagnini L, Selvaggi G (1992) Three-dimensional P-velocity structure in the region of the Ms = 6.9 Irpinia, Italy, normal faulting earthquake. Phys Earth Planet Inter 75:111–119. doi:10.1016/0031-9201(92)90122-C

    Article  Google Scholar 

  • Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytic means. Geophys J Int 103:363–376. doi:10.1111/j.1365-246X.1990.tb01777.x

    Article  Google Scholar 

  • Anzidei M, Baldi P, Casula G, Galvani A, Mantovani E, Pesci A, et al. (2001) Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys J Int 146:98–110. doi:10.1046/j.0956-540x.2001.01425.x

    Article  Google Scholar 

  • Bernard P, Zollo A (1989) The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting. J Geophys Res 94:1631–1647. doi:10.1029/JB094iB02p01631

    Article  Google Scholar 

  • Bott MHP (1959) The mechanisms of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • D’Argenio B, Pescatore TS, Scandone P (1974) Schema geologico dell’Appennino Meridionale (Campania e Lucania). Atti del Convegno: Moderne Vedute sulla Geologia dell’Appennino Meridionale. Accad Naz Lincei (Rome) 183:49–72

    Google Scholar 

  • Del Pezzo E, Iannaccone G, Martini M, Scarpa R (1983) The 23 November 1980 southern Italy earthquake. Bull Seismol Soc Am 73:187–200

    Google Scholar 

  • Deschamps A, King GCP (1984) Aftershocks of the Campania–Lucania (Italy) earthquake of the 23 November 1980. Bull Seismol Soc Am 74:2483–2517

    Google Scholar 

  • Ellsworth WL, Zhonghuai X (1980) Determination of the stress tensor from focal mechanism data. Eos Trans AGU 61:1117 (abstract)

    Google Scholar 

  • Frepoli A, Amato A (2000) Spatial variation in stress in peninsular Italy and Sicily from background seismicity. Tectonophysics 317:109–124. doi:10.1016/S0040-1951(99)00265-6

    Article  Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320. doi:10.1029/JB089iB11p09305

    Article  Google Scholar 

  • Giardini A (1993) Teleseismic observation of the November 23 1980, Irpinia earthquake. Ann Geofis XXXVI:17–25.

    Google Scholar 

  • Improta L, Iannaccone G, Capuano P, Zollo A, Scandone P (2000) Inference on the upper crustal structure of the Southern Apennines (Italy) from seismic refraction investigations and subsurface data. Tectonophysics 317:273–297. doi:10.1016/S0040-1951(99)00267-X

    Article  Google Scholar 

  • Improta L, Bonagura M, Capuano P, Iannaccone G (2003) An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, M = 6.9, Irpinia earthquake (Southern Italy). Tectonophysics 361:139–169. doi:10.1016/S0040-1951(02)00588-7

    Article  Google Scholar 

  • Lomax A, Virieux J, Volant P, Thierry BC (2000). Probabilistic earthquake location in 3D and layered models. Kluwer Academic, Dordrecht, pp 101–134

    Google Scholar 

  • McGarr A, Gay NC (1978) State of stress in the Earth’s crust. Annu Rev Earth Planet Sci 6:405–436. doi:10.1146/annurev.ea.06.050178.002201

    Article  Google Scholar 

  • McKenzie DP (1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull Seismol Soc Am 59:591–601

    Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185

    Google Scholar 

  • Menardi A, Rea G (2000) Deep structure of the Campania–Lucania arc (Southern Apennines, Italy). Tectonophysics 324:239–265. doi:10.1016/S0040-1951(00)00137-2

    Article  Google Scholar 

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526. doi:10.1029/JB089iB13p11517

    Article  Google Scholar 

  • Michael AJ (1987a) Use of the mechanisms to determine stress: a control study. J Geophys Res 92:357–368. doi:10.1029/JB092iB01p00357

    Article  Google Scholar 

  • Michael AJ (1987b) Stress rotation during the Coalinga aftershock sequence. J Geophys Res 92:7963–7979. doi:10.1029/JB092iB08p07963

    Article  Google Scholar 

  • Montone P, Amato A, Pondrelli S (1999) Active stress map of Italy. J Geophys Res 104:25595–25610. doi:10.1029/1999JB900181

    Article  Google Scholar 

  • Pantosti D, Valensise G (1990) Faulting mechanism and complexity of the November 23, 1980, Campania–Lucania earthquake, inferred from surface observations. J Geophys Res 95:15319–15341. doi:10.1029/JB095iB10p15319

    Article  Google Scholar 

  • Patacca E, Scandone P (1989) Post-Tortonian mountain building in the Apennines: the role of the passive sinking of a relic lithospheric slab. In: Boriani, Bonafede M, Piccado GB, Vai eGB (eds) The lithosphere in Italy. Acc Naz Lincei 80:157–176

  • Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic arc: kinematic relations singe Late Tortonian times. Mem Soc Geol Ital 5:425–451

    Google Scholar 

  • Podvin P, Lecomte I (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105:271–284. doi:10.1111/j.1365-246X.1991.tb03461.x

    Article  Google Scholar 

  • Reasemberg P, Oppenheimer D (1985) Fpfit, Fpplot and Fppage. Fortran computer programs for calculating and displaying earthquake fault-plane solutions. U.S. Geol. Surv., Open-File Report 85–739

  • Rivera L, Cisternas A (1990) Stress tensor and fault plane solution for a population of earthquakes. Bull Seismol Soc Am 80:600–614

    Google Scholar 

  • Romeo A, De Matteis R, Pasquale G, Iannaccone G, Zollo A (2007). Crustal structure and stress field for southern Apennines Region from local earthquakes. 24th International Union of Geodesy and Geophysics General Assembly, Perugia, Italy, 2–13 July 2007

  • Roure F, Casero P, Vially R (1991) Growth processes and melange formation in the Southern Apennines accretionary wedge. Earth Planet Sci Lett 102:395–412. doi:10.1016/0012-821X(91)90031-C

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Amsterdam

    Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys Res 50:159–170

    Google Scholar 

  • Tiberti MM, Orlando L, Di Bucci D, Bernabini M, Parotto M (2005) Regional gravity anomaly map and crustal model of the Central-Southern Apennines (Italy). J Geodyn 40:73–91. doi:10.1016/j.jog.2005.07.014

    Article  Google Scholar 

  • Westaway R, Jackson JA (1987) The earthquake of 1980 November 23 in Campania–Basilicata (Southern Italy). Geophys J R Astron Soc 90:375–443

    Google Scholar 

  • Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452. doi:10.1016/S0191-8141(99)00163-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pasquale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquale, G., De Matteis, R., Romeo, A. et al. Earthquake focal mechanisms and stress inversion in the Irpinia Region (southern Italy). J Seismol 13, 107–124 (2009). https://doi.org/10.1007/s10950-008-9119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-008-9119-x

Keywords

Navigation