Skip to main content
Log in

Hydrides under High Pressure

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The experimental discovery of the highest, up to 0 degree Celsius, superconducting transition temperatures T\(_c\) in the class of so-called hydrides under high pressure is undoubtedly the striking event in modern physics. In this paper, we give a short overview of the some history of the room-temperature conventional superconductivity. A theoretical description of such high T\(_c\), as was shown and even predicted in a number of ab initio works, can be unambiguously given in the framework of the electron–phonon mechanism of Cooper pairing. Thus, the basic equation to calculate T\(_c\) will be the one proposed in 1957 by Bardeen, Cooper, and Schriefer. It is known that in this case the value of T\(_c\) is directly determined by a number of effective parameters: the Debye frequency, the density of electronic states at the Fermi level, and the electron–phonon interaction constant. Within the framework of the modern development of the density functional theory, all these quantities can be obtained using standard packages for band structure calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525(7567), 73–76 (2015). https://doi.org/10.1038/nature14964

  2. Eremets, M.I., Drozdov, A.P.: High-temperature conventional superconductivity. Phys. Usp. 59(11), 1154–1160 (2016). https://doi.org/10.3367/UFNe.2016.09.037921

  3. Gor’kov, L.P., Kresin, V.Z.: Colloquium: High pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90, 011001 (2018). https://doi.org/10.1103/RevModPhys.90.011001

  4. Pickard, C.J., Errea, I., Eremets, M.I.: Superconducting hydrides under pressure. Annual Review of Condensed Matter Physics 11(1), 57–76 (2020). https://doi.org/10.1146/annurev-conmatphys-031218-013413

  5. Flores-Livas, J.A., Boeri, L., Sanna, A., Profeta, G., Arita, R., Eremets, M.: A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 856, 1–78 (2020). https://doi.org/10.1016/j.physrep.2020.02.003. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials

  6. Liu, H., Naumov, I.I., Hoffmann, R., Ashcroft, N.W., Hemley, R.J.: Potential high-tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. 114(27), 6990–6995 (2017). https://www.pnas.org/content/114/27/6990.full.pdf. https://doi.org/10.1073/pnas.1704505114

  7. Kruglov, I., Akashi, R., Yoshikawa, S., Oganov, A.R., Esfahani, M.M.D.: Refined phase diagram of the h-s system with high-\({T}_{c}\) superconductivity. Phys. Rev. B 96, 220101 (2017). https://doi.org/10.1103/PhysRevB.96.220101

  8. Zurek, E., Bi, T.: High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. Chin. J. Chem. Phys. 150(5), 050901 (2019).  https://doi.org/10.1063/1.5079225

  9. Drozdov, A.P., Kong, P.P., Minkov, V.S., Besedin, S.P., Kuzovnikov, M.A., Mozaffari, S., Balicas, L., Balakirev, F.F., Graf, D.E., Prakapenka, V.B., Greenberg, E., Knyazev, D.A., Tkacz, M., Eremets, M.I.: Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569(7757), 528–531 (2019). https://doi.org/10.1038/s41586-019-1201-8

  10. Somayazulu, M., Ahart, M., Mishra, A.K., Geballe, Z.M., Baldini, M., Meng, Y., Struzhkin, V.V., Hemley, R.J.: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019). https://doi.org/10.1103/PhysRevLett.122.027001

  11. Troyan, I.A., Semenok, D.V., Kvashnin, A.G., Sadakov, A.V., Sobolevskiy, O.A., Pudalov, V.M., Ivanova, A.G., Prakapenka, V.B., Greenberg, E., Gavriliuk, A.G., Lyubutin, I.S., Struzhkin, V.V., Bergara, A., Errea, I., Bianco, R., Calandra, M., Mauri, F., Monacelli, L., Akashi, R., Oganov, A.R.: Anomalous high-temperature superconductivity in yh6. Adv. Mater. 33(15), 2006832 (2021). https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202006832. https://doi.org/10.1002/adma.202006832

  12. Semenok, D.V., Troyan, I.A., Ivanova, A.G., Kvashnin, A.G., Kruglov, I.A., Hanfland, M., Sadakov, A.V., Sobolevskiy, O.A., Pervakov, K.S., Lyubutin, I.S., Glazyrin, K.V., Giordano, N., Karimov, D.N., Vasiliev, A.L., Akashi, R., Pudalov, V.M., Oganov, A.R.: Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today 48, 18–28 (2021). https://doi.org/10.1016/j.mattod.2021.03.025

  13. Snider, E., Dasenbrock-Gammon, N., McBride, R., Wang, X., Meyers, N., Lawler, K.V., Zurek, E., Salamat, A., Dias, R.P.: Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett. 126, 117003 (2021). https://doi.org/10.1103/PhysRevLett.126.117003

  14. Snider, E., Dasenbrock-Gammon, N., McBride, R., Debessai, M., Vindana, H., Vencatasamy, K.N., Lawler, K.V., Salamat, A., Dias, R.P.: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586(7829), 373–377 (2020). https://doi.org/10.1038/s41586-020-2801-z

  15. Ginzburg, V.L: The problem of high temperature superconductivity. Contemp. Phys. 9(4), 355–374 (1968). https://doi.org/10.1080/00107516808220090. [Usp. Fiz. Nauk, 98, 91 (1968); https://doi.org/10.3367/UFNr.0095.196805g.0091]

  16. Hirsch, J.E.: On the ac magnetic susceptibility of a room temperature superconductor: anatomy of a probable scientific fraud. Physica C: Superconductivity and its Applications 1353964 (2021). https://doi.org/10.1016/j.physc.2021.1353964

  17. Sadovskii, M.V.: Limits of Eliashberg theory and bounds for superconducting transition temperature. Phys. Usp. (2021). https://doi.org/10.3367/UFNe.2021.05.039007. Preprint at arXiv:2106.09948 [cond-mat.supr-con]

  18. Scalapino, D.J.: In: Parks, R.D. (ed.) Superconductivity, vol. 1, p. 449. Marcel Dekker, New York (1969)

  19. Allen, P.B., Mitrovic, B.: In: Seitz, F., Turnbull, D., Ehrenreich H. (eds.) Solid State Physics, vol. 37, p. 1. Academic Press, New York (1982)

  20. Kresin, V., Ovchinnikov, S., Wolf, S.: Superconducting state: Mechanisms and materials, vol. 170. Oxford University Press, Oxford (2021)

    Book  Google Scholar 

  21. Vonsovsky, S.V., Izyumov, Y.A., Kurmaev, E.Z.: Superconductivity of transition metals their alloys and compounds. Springer, Berlin - Heidelberg (1982)

    Book  Google Scholar 

  22. Migdal, A.B.: Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 7(6), 996–1001 (1958). [Zh. Eksp. Teor. Fiz. 34, 1438 (1958)]

  23. Kamerlingh, O.H.: In: Gavroglu, K., Goudaroulis, Y. (eds.) Further experiments with Liquid Helium. G. On the Electrical Resistance of Pure Metals, etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears., pp. 267–272. Springer Netherlands, Dordrecht (1991). https://doi.org/10.1007/978-94-009-2079-8_17

  24. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). https://doi.org/10.1103/PhysRev.108.1175

  25. Ashcroft, N.W.: Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968). https://doi.org/10.1103/PhysRevLett.21.1748

  26. Maksimov, E.G., Savrasov, D.Y.: Lattice stability and superconductivity of the metallic hydrogen at high pressure. Solid State Commun. 119(10), 569–572 (2001). https://doi.org/10.1016/S0038-1098(01)00301-5

  27. Wigner, E., Huntington, H.B.: On the possibility of a metallic modification of hydrogen. Chin. J. Chem. Phys. 3(12), 764–770 (1935).  https://doi.org/10.1063/1.1749590

  28. Eremets, M., Troyan, I., Drozdov, A.: Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. Preprint at https://arxiv.org/abs/1601.04479 (2016)

  29. Ackland, G.J., Loveday, J.S.: Structures of solid hydrogen at 300 K. Phys. Rev. B 101, 094104 (2020). https://doi.org/10.1103/PhysRevB.101.094104

  30. Liao, K., Li, X.-Z., Alavi, A., Grüneis, A.: A comparative study using state-of-the-art electronic structure theories on solid hydrogen phases under high pressures. npj Comput. Mater. 5(1), 110 (2019). https://doi.org/10.1038/s41524-019-0243-7

  31. Li, B., Ding, Y., Kim, D.Y., Wang, L., Weng, T.-C., Yang, W., Yu, Z., Ji, C., Wang, J., Shu, J., Chen, J., Yang, K., Xiao, Y., Chow, P., Shen, G., Mao, W.L., Mao, H.-K.: Probing the electronic band gap of solid hydrogen by inelastic x-ray scattering up to 90 gpa. Phys. Rev. Lett. 126, 036402 (2021). https://doi.org/10.1103/PhysRevLett.126.036402

  32. Eremets, M.I., Troyan, I.A.: Conductive dense hydrogen. Nat. Mater. 10(12), 927–931 (2011). https://doi.org/10.1038/nmat3175

  33. Ashcroft, N.W.: Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004). https://doi.org/10.1103/PhysRevLett.92.187002

  34. Eremets, M.I., Trojan, I.A., Medvedev, S.A., Tse, J.S., Yao, Y.: Superconductivity in hydrogen dominant materials: Silane. Science 319(5869), 1506–1509 (2008). https://doi.org/10.1126/science.1153282

    Article  ADS  Google Scholar 

  35. Chen, X.-J., Wang, J.-L., Struzhkin, V.V., Mao, H.-K., Hemley, R.J., Lin, H.-Q.: Superconducting behavior in compressed solid \({\mathrm{sih}}_{4}\) with a layered structure. Phys. Rev. Lett. 101, 077002 (2008). https://doi.org/10.1103/PhysRevLett.101.077002

  36. Martinez-Canales, M., Oganov, A.R., Ma, Y., Yan, Y., Lyakhov, A.O., Bergara, A.: Novel structures and superconductivity of silane under pressure. Phys. Rev. Lett. 102, 087005 (2009). https://doi.org/10.1103/PhysRevLett.102.087005

  37. Tse, J.S., Yao, Y., Tanaka, K.: Novel superconductivity in metallic \({\mathrm{snh}}_{4}\) under high pressure. Phys. Rev. Lett. 98, 117004 (2007). https://doi.org/10.1103/PhysRevLett.98.117004

  38. Gao, G., Oganov, A.R., Li, P., Li, Z., Wang, H., Cui, T., Ma, Y., Bergara, A., Lyakhov, A.O., Iitaka, T., Zou, G.: High-pressure crystal structures and superconductivity of stannane (snh4). Proc. Natl. Acad. Sci. 107(4), 1317–1320 (2010). https://www.pnas.org/content/107/4/1317.full.pdfhttps://doi.org/10.1073/pnas.0908342107

  39. Gao, G., Oganov, A.R., Bergara, A., Martinez-Canales, M., Cui, T., Iitaka, T., Ma, Y., Zou, G.: Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002 (2008). https://doi.org/10.1103/PhysRevLett.101.107002

  40. Li, Y., Gao, G., Xie, Y., Ma, Y., Cui, T., Zou, G.: Superconductivity \(^\sim\)100 K in dense sih4(h2)2 predicted by first principles. Proc. Natl. Acad. Sci. 107(36), 15708–15711 (2010). https://www.pnas.org/content/107/36/15708.full.pdfhttps://doi.org/10.1073/pnas.1007354107

  41. Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: The metallization and superconductivity of dense hydrogen sulfide. Chin. J. Chem. Phys. 140(17), 174712 (2014). https://doi.org/10.1063/1.4874158

  42. Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., Cui, T.: Pressure-induced metallization of dense (h2s)2h2 with high-tc superconductivity. Sci. Rep. 4(1), 6968 (2014). https://doi.org/10.1038/srep06968

  43. Shipley, A.M., Hutcheon, M.J., Needs, R.J., Pickard, C.J.: High-throughput discovery of high-temperature conventional superconductors. Phys. Rev. B 104, 054501 (2021). https://doi.org/10.1103/PhysRevB.104.054501

  44. Troyan, I., Gavriliuk, A., Rüffer, R., Chumakov, A., Mironovich, A., Lyubutin, I., Perekalin, D., Drozdov, A.P., Eremets, M.I.: Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science 351(6279), 1303–1306 (2016). https://doi.org/10.1126/science.aac8176

Download references

Funding

This work was partially supported by RFBR grant No. 20-02-00011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Nekrasov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I., Ovchinnikov, S. Hydrides under High Pressure. J Supercond Nov Magn 35, 959–963 (2022). https://doi.org/10.1007/s10948-021-06087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06087-3

Keywords

Navigation