Skip to main content
Log in

The Layer-Inserting Growth of Antiferromagnetic Topological Insulator MnBi2Te4 Based on Symmetry and Its X-ray Photoelectron Spectroscopy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The antiferromagnetic topological insulator has attracted lots of attention recently, as its intrinsic magnetism and topological property make it a potential material to realize the quantum anomalous Hall effect at relative high temperature. Until now, only MnBi2Te4 is predicted and grown successfully. The other MB2T4-family materials predicted (MB2T4: M = transition metal or rare earth element, B = Bi or Sb, T = Te, Se, or S) with not only antiferromagnetic topological property but also rich and exotic topological quantum states and dynamically stable (or metastable) structure have not been realized on experiment completely. Here, MnBi2Te4 single crystals have been grown successfully by us. It shows typical antiferromagnetic character with Neel temperature of 24.5 K and a spin-flop transition at H ≈ 35,000 Oe, 1.8 K. In order to obtain the other members of MB2T4-family materials, it is necessary to understand the growth mode of MnBi2Te4. Its growth mode may be the layer-inserting growth mode based on symmetry, which is supported by our X-ray photoelectron spectroscopy (XPS) result, as the intrinsic chemical states of Mn and Te of MnBi2Te4 are the same with those of inserting material α-MnTe. Understanding the growth mode of MnBi2Te4 can help us to grow the other members of MB2T4-family materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He, K., Wang, Y.Y., Xue, Q.K.: Quantum anomalous hall effect. Nat. Sci. Rev. 1(1), 38–48 (2014)

    Article  Google Scholar 

  2. Nagaosa, N., Sinova, J., Onoda, S.: Anomalous hall effect. Rev. Mod. Phys. 82(2), 1539 (2010)

    Article  ADS  Google Scholar 

  3. Onoda, M., Nagaosa, N.: Quantized anomalous hall effect in two-dimensional ferromagnets: quantum hall effect in metals. Phys. Rev. Lett. 90(20), 206601 (2003)

    Article  ADS  Google Scholar 

  4. Chang, C.Z., et al.: Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013)

    Article  ADS  Google Scholar 

  5. Tokura, Y., Yasuda, K., Tsukazaki, A.: Magnetic topological insulators. Nat. Rev. Phys. 1(2), 126–143 (2019)

    Article  Google Scholar 

  6. Weng, H.M., Dai, X., Fang, Z.: From anomalous hall effect to the quantum anomalous hall effect. AAPPS Bulletin 3, 23 (2013)

    Google Scholar 

  7. Yu, R., Zhang, W., Zhang, H.J., et al.: Quantized anomalous hall effect in magnetic topological insulators. Science 329(5987), 61–64 (2010)

    Article  ADS  Google Scholar 

  8. Chang, C.Z., Li, M.: Quantum anomalous hall effect in time-reversal-symmetry breaking topological insulators. J. Phys. Condens. Matter. 28(12), 123002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. He, K., Wang, Y., Xue, Q.K.: Topological materials: quantum anomalous hall system. Annu. Rev. Condens. Matter. Phys. 9, 329–344 (2018)

    Article  ADS  Google Scholar 

  10. Chang, C.Z., et al.: High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nat. Mater 14(5), 473–477 (2015)

    Article  ADS  Google Scholar 

  11. Lee, S.H., Zhu, Y.L., Wang, Y., Miao, L.X.: Spin scattering and noncollinear spin structure-induced intrinsic anomalous hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1(1), 012011 (2019)

    Article  Google Scholar 

  12. Xu, S.Y., Madhab, N., Liu, C., Zhang, D.M., Anthony, R., Andrew, W.L., et al.: Hedgehog spin texture and berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8(8), 616–622 (2012)

    Article  Google Scholar 

  13. Chen, Y.L., Chu, J.H., Analytis, J.G., Liu, Z.K., et al.: Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329(5992), 659–662 (2010)

    Article  ADS  Google Scholar 

  14. Bushra, I., Ratnamala, C.: Magneto-transport and Kondo effect in cobalt doped Bi2Se3 topological insulators. Appl. Phys. Lett. 107(17), 173108 (2015)

    Article  Google Scholar 

  15. Rahul, S., Shukla, K.K., Kumar, A., Okram, G.S., et al.: Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator. J. Phys. Condens. Matter 28(37), 376001 (2016)

    Article  Google Scholar 

  16. Abhishek, S., Ghosh, A.K., Sandip, C.: Antiferromagnetic ordering at room temperature in Co-doped Sb2Te3 topological insulators. J. Supercond. Nov. Magn. 31(2), 299–305 (2018)

    Article  Google Scholar 

  17. Peng, W., Ferhat, K., Badih, A., Hadar, S., et al.: Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110(18), 186807 (2013)

    Article  Google Scholar 

  18. Lee, C., Ferhat, K., Pablo, J.H., et al.: Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet. Nat. Commun. 7(1), 1–6 (2016)

    Google Scholar 

  19. Ferhat, K., Valeria, L., Flavio, N., Badih, A., Michelle, J., et al.: A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533(7604), 513–516 (2016)

    Article  Google Scholar 

  20. Murong, L., Mohammad, M., Mehmet, O., Kou, X.F., Fan, Y.B., et al.: Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano. Lett. 14(6), 3459–3465 (2014)

    Article  ADS  Google Scholar 

  21. Jiang, Z.L., Chang, C.Z., Tang, C., Zheng, J.G., et al.: Structural and proximity-induced ferromagnetic properties of topological insulator-magnetic insulator heterostructures. AIP Adv. 6(5), 055809 (2016)

    Article  ADS  Google Scholar 

  22. Che, X.Y., Koichi, M., Lei, P., Lin, H.Q., Yu, G.Q., et al.: Proximity-induced magnetic order in a transferred topological insulator thin film on a magnetic insulator. ACS Nano. 12(5), 5042–5050 (2018)

    Article  Google Scholar 

  23. Lin, Q.H., Kou, X.F., Alexander, G., Gen, Y., Lei, P., et al.: Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nat. Mater. 16(1), 94–100 (2017)

    Article  Google Scholar 

  24. Tang, C., Chang, C.Z., Zhao, G.J., Liu, Y.W., Jiang, Z.L., et al.: Above 400-k robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3(6), e1700307 (2017)

    Article  ADS  Google Scholar 

  25. Yang, C.Y., Pan, L., Alexander, G., Wang, H.Y., Che, X.Y., et al.: Termination switching of antiferromagnetic proximity effect in topological insulator. Sci. Adv. 6(33), eaaz8463 (2020)

    Article  ADS  Google Scholar 

  26. Tang, P., Zhou, Q., Xu, G., Zhang, S.C.: Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12(12), 1100–1104 (2016)

    Article  Google Scholar 

  27. Zhang, D., Shi, M., Zhu, T., Xing, D., Zhang, H., Wang, J.: Topological axion states in magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122(20), 206401 (2019)

    Article  ADS  Google Scholar 

  28. Li, J., Li, Y., Du, S., Wang, Z., et al.: Intrinsic magnetic topological insulators in van der waals layered MnBi2Te4-family materials. Sci. Adv. 5(6), eaaw5685 (2019)

    Article  ADS  Google Scholar 

  29. Otrokov, M.M., Mikhail, M., Klimovskikh, et al.: Prediction and observation of an antiferromagnetic topological insulator. Nature 576(7787), 416–422 (2019)

    Article  ADS  Google Scholar 

  30. Yan, J.Q., et al.: Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3(6), 064202 (2019)

    Article  Google Scholar 

  31. Zeugner, A., et al.: Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31(8), 2795–2806 (2019)

    Article  Google Scholar 

  32. Li, H., et al.: Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys. Chem. Chem. Phys. 22(2), 556–563 (2020)

    Article  ADS  Google Scholar 

  33. Gong, Y., Guo, J.W., Li, J.H., et al.: Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36(7), 076801 (2019)

    Article  ADS  Google Scholar 

  34. Aoki, A., et al.: X-ray photoelectron spectroscopic studies on ZnS: MnF2 phosphors. Jpn. J. Appl. Phys. 15(2), 305 (1976)

    Article  ADS  Google Scholar 

  35. Lee, D.S., Kim, T.H., Park, C.H., Chung, C.Y., Lim, Y.S., Seo, W.S., Park, H.H.: Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm. 15(27), 5532–5538 (2013)

    Article  Google Scholar 

  36. Chowdhury, S., Kevin, F., Garrity, Tavazza, F.: Prediction of weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4. NPJ Comput. Mater. 5(1), 1–7 (2019)

    Article  Google Scholar 

  37. Eremeev, S.V., Otrokov, M.M., Chulkov, E.V.: Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: an ab-initio study. J. Alloy. Compd. 709, 172–178 (2017)

    Article  Google Scholar 

  38. Li, H., Liu, S.S., Liu, C., Zhang, J.S., Xu, Y.: Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Chem. Phys. 22(2), 556–563 (2020)

    Google Scholar 

  39. Wang, C., Wang, Z.C., Mei, Y.X., Li, Y.K., et al.: A new ZrCuSiAs-type superconductor: ThFeAsN. J. Am. Chem. Soc. 138(7), 2170–2173 (2016)

    Article  Google Scholar 

  40. Wang, J.F., Jiao, F., Wang, X.Y., Zhu, S., Cai, L.B., Yang, C.H., Song, P.W., Zhang, F.X., Li, B.Z., Li, Y.L., Hu, J.Y., Li, S.B., Li, Y.Q., Tan, S.G., Mei, Y.X., Jing, Q., Liu, B., Wang, C., Qian, D.: The phase transition of ThFe1−xCoxAsN from superconductor to metallic paramagnet. EPL 130(6), 67003 (2020)

    Article  ADS  Google Scholar 

  41. Zhang, F.X., Li, B.Z., Ren, Q.Y., Mao, H.C., et al.: Thmnpnn (Pn = P, As): synthesis, structure and chemical pressure effects. Inorg. Chem. 59(5), 2937–2944 (2020)

    Article  Google Scholar 

  42. Klimovskikh, I.I., Otrokov, M.M., Estyunin, D., Eremeev, S. e. V., Filnov, S.O., et al.: Tunable 3D/2D magnetism in the (MnBi2,Te4)(Bi2Te3)m topological insulators family. npj Quantum Materials 5(1), 1–9 (2020)

    Article  Google Scholar 

  43. Shi, M.Z., Lei, B., Zhu, C.S., Ma, D.H., Cui, J.H., et al.: Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n = 1, 2). Phys. Rev. B. 100(15), 155144 (2019)

    Article  ADS  Google Scholar 

  44. Wu, J.Z., Liu, F.C., Sasase, M., Ienaga, K., et al.: Natural van der waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5(11), eaax9989 (2019)

    Article  ADS  Google Scholar 

  45. Hu, C.W., Ding, L., Gordon, K.N., Ghosh, B., Tien, H.J., Li, H.X., et al.: Realization of an intrinsic ferromagnetic topological state in MnBi8Te13. Sci. Adv. 6(30), eaba4275 (2020)

    Article  ADS  Google Scholar 

  46. Deng, Y.J., Yu, Y.J., Shi, M.Z., Xu, Z.X., Guoand, Z.H., et al.: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367(6480), 895–900 (2020)

    Article  ADS  Google Scholar 

  47. Zhang, H.J., Liu, C.X., Qi, X.L., Dai, X., Fang, Z., Zhang, S.C.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009)

    Article  Google Scholar 

  48. Jiang, H., Sun, Y.L., Xu, Z.A., Cao, G.H.: Crystal chemistry and structural design of iron-based superconductors. Chin. Phys. B. 22(8), 087410 (2013)

    Article  ADS  Google Scholar 

  49. Hess, C., Kondrat, A., Narduzzo, A., et al.: The intrinsic electronic phase diagram of iron-oxypnictide superconductors. EPL 87(1), 17005 (2009)

    Article  ADS  Google Scholar 

  50. Moulder, J.F., Stickle, W.F., Bomben, P.E., Soboland K.D.: Handbook of X-ray photoelectron spectroscopy. Physical Electronics 8, 230–232 (1995)

    Google Scholar 

  51. Heinonen, R.J., Iwanowskiand, M.H., Janik, E.: X-ray photoelectron spectra of zinc-blende MnTe. Chem. Phys. Lett. 387(1-3), 110–115 (2004)

    Article  ADS  Google Scholar 

  52. Iwanowski, R.J., Heinonen, M.H., Janik, E.: Sputter cleaning and annealing of zinc-blende MnTe surface—XPS study. Appl. Surf. Sci. 249(1-4), 222–230 (2005)

    Article  ADS  Google Scholar 

  53. Jeng, S.P., Lad, R.J., Henrich, V.E.: Satellite structure in the photoemission spectra of MnO(100). Phys. Rev. B. 43(14), 11971 (1991)

    Article  ADS  Google Scholar 

  54. van Elp, J., Potze, R.H., Eskes, H., Berger, R., Sawatzky, G.A.: Electronic structure of MnO. Phys. Rev. B 44(4), 1530 (1991)

    Article  ADS  Google Scholar 

  55. Oku, M., Wagatsuma, K., Konishi, T.: Relation between 2p X-ray photoelectron and Kα X-ray emission spectra of manganese and iron oxides. J. Electron. Spectrosc. 98, 277–285 (1999)

    Article  Google Scholar 

  56. Park, J., Ryu, S., Han, M., Oh, S.J.: Charge-transfer satellites in the 2p core-level photoelectron spectra of heavy-transition-metal dihalides. Phys. Rev B. 37(18), 10867 (1988)

    Article  ADS  Google Scholar 

  57. Umezawa, Y., Reilley, C.N.: Effect of argon ion bombardment on metal complexes and oxides studied by x-ray photoelectron spectroscopy. Anal. Chem. 50(9), 1290–1295 (1978)

    Article  Google Scholar 

  58. Bando, H., Koizumi, K., Oikawa, Y., Daikohara, K., et al.: The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy. J. Phys. Condens. Matter 12(26), 5607 (2000)

    Article  ADS  Google Scholar 

  59. El Ashram, T., Carapeto Ana, P., et al.: Rapidly solidified melt-spun Bi-Sn ribbons: surface composition issues. J. Adv. Phys. 11(5) (2016)

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province, China (Nos. ZR2016AQ08, ZR2019MA036) and National Natural Science Foundation of China (No. 11804194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jing or Bo Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, F., Wang, J., Wang, X. et al. The Layer-Inserting Growth of Antiferromagnetic Topological Insulator MnBi2Te4 Based on Symmetry and Its X-ray Photoelectron Spectroscopy. J Supercond Nov Magn 34, 1485–1493 (2021). https://doi.org/10.1007/s10948-021-05821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05821-1

Keywords

Navigation