Skip to main content
Log in

The Study of Switching Dynamics in Planar Structures Based on Epitaxial Films of YBa2Cu3O7-δ High-Temperature Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have been studying the dynamic effects of bipolar resistive switching (BERS) in memristive planar heterostructures based on c-oriented epitaxial films of the high-temperature superconductor YBa2Cu3O7 (YBCO). We have been observing the suppression of the memristive properties of the structures under sinusoidal and pulse loads and the nucleation and the evolution of the regions of current density and electric field in the structures under study. We found that the limiting frequencies of a sinusoidal type load for observing the switching effect are frequencies of about 104 Hz. It has been shown that the percolation channel is formed by the appearance of electric field domains in which the electric field threshold is reached. The switchings are controlled by two processes, with time t < ms and a longer time of the order of a few seconds. Possible physical models of the observed phenomena are being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Di Ventra, M, Pershin Yu.V., Chua, L.O.; Circuit elements with memory: memristors, memcapacitors, meminductors, in Proceedings of the IEEE, 97, 1717 (2009): https://doi.org/10.1109/JPROC.2009.2021077

  2. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat.Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

    Article  ADS  Google Scholar 

  3. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765 (2011). https://doi.org/10.1007/s00339-011-6264-9

    Article  ADS  MATH  Google Scholar 

  4. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011). https://doi.org/10.1080/00018732.2010.544961

    Article  ADS  Google Scholar 

  5. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  ADS  Google Scholar 

  6. Wang, C., Wu, H., Gao, B., Zhang, T., Yang, Y., Qian, H.: Conduction mechanisms, dynamics and stability in ReRAMs: microelectron. Eng. 187-188, 121 (2018). https://doi.org/10.1016/j.mee.2017.11.003

    Article  Google Scholar 

  7. Li, Y., Wang, Z., Midya, R., Xia, Q., Yang, J.J.: Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f

    Article  ADS  Google Scholar 

  8. Pérez-Tomás, A.: Functional oxides: functional oxides for photoneuromorphic engineering: toward a solar brain. Adv.Mater. Interfaces. 6(15), 1970096 (2019). https://doi.org/10.1002/admi.201970096

    Article  Google Scholar 

  9. Tulina, N.A., Borisenko, I.Y., Ivanov, A.A., Ionov, A.M., Shmytko, I.M.: Oxygen doping of HTSC and resistive switching in HTSC-based heterostructures. SpringerPlus. 2(1), 384 (2013). https://doi.org/10.1186/2193-1801-2-384

    Article  Google Scholar 

  10. Tulina, N.A., Ivanov, A.A., Rossolenko, A.N., Shmytko, I.M., Ionov, A.M., Mozhchil, R.N., Bozhko, S.I., Borisenko, I.Y., Tulin, V.A.: X-ray photoelectron spectroscopy studies of electronic structure of Nd2−xCexCuO4−y and YBa2Cu3O7−y epitaxial film surfaces and resistive switchings in high temperature superconductor-based heterostructures. Mater. Lett. 203, 97 (2017). https://doi.org/10.1016/j.matlet.2017.05.091

    Article  Google Scholar 

  11. Tulina, N.A., Rossolenko, A.N., Shmytko, I.M., Ivanov, А.А., Sirotkin, V.V., Borisenko, I.Y., Tulin, V.A.: Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa2Cu3O7− δ high temperature superconductor: Supercond. Sci. Technol. 32, 015003 (2019). https://doi.org/10.1088/1361-6668/aae966

    Article  ADS  Google Scholar 

  12. Pickett, W.E., Singh, D.J., Krakauer, H., Cohen, R.E.: Fermi surfaces, fermi liquids, and high-temperature superconductors. Science. 255(5040), 46–54 (1992). https://doi.org/10.1126/science.255.5040.46

    Article  ADS  Google Scholar 

  13. Celinska, J., McWilliams, C., Paz de Araujo, C., Xue, K.-H.: Material and process optimization of correlated electron random access memories. J. Appl. Phys. 109(9), 091603 (2011). https://doi.org/10.1063/1.3581197

    Article  ADS  Google Scholar 

  14. Pan, T.-M., Lu, C.-H.: Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 99(11), 113509 (2011). https://doi.org/10.1063/1.3638490

    Article  ADS  Google Scholar 

  15. Agafonov, A.I., Manykin, É.A.: Superconductivity in doped nondegenerate insulators. J. Exp. Theor. Phys. 97, 358 (2003). https://doi.org/10.1134/1.1609000

    Article  ADS  Google Scholar 

  16. Berdan, R., Serb, A., Khiat, A., Regoutz, A., Papavassiliou, C., Prodromakis, T.: A μ-Controller-Based System for Interfacing Selectorless RRAM Crossbar Arrays, in IEEE Transactions on Electron Devices, 62, 2190, vol. 62, p. 2190 (2015). https://doi.org/10.1109/TED.2015.2433676

    Book  Google Scholar 

  17. Serb, A., Khiat, A. and Prodromakis, T., An RRAM Biasing Parameter Optimizer, in , in in IEEE Transactions on Electron Devices, 62, 3685 (2015): https://doi.org/10.1109/TED.2015.2478491

  18. Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., Prodromakis, T.: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016). https://doi.org/10.1038/ncomms12611

    Article  ADS  Google Scholar 

  19. Gupta, I., Serb, A., Khiat, A., Zeitler, R., Vassanelli, S., Prodromakis, T.: Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun. 7, 12805 (2016). https://doi.org/10.1038/ncomms1280

    Article  ADS  Google Scholar 

  20. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  21. Paola, B., Bottizzo, E., Rizzi, N.: Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth. 269(625), 625 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.082

    Article  ADS  Google Scholar 

  22. Meijer, G.I.: Who wins the nonvolatile memory race? Science. 319, 1625 (2008). https://doi.org/10.1126/science.1153909

    Article  Google Scholar 

  23. Pergament, A. L., Stefanovich, G. B., Kuldin, N. A. and Velichko, A. A., On the problem of metal-insulator transitions in vanadium oxides, ISRN Condensed Matter Physics 2013 (2013), Article ID 960627. DOI:https://doi.org/10.1155/2013/960627

  24. Parajuli, S., Budhathoki, R.K.: Comparative analysis of switching dynamics in different memristor models. arXiv:1906.05643v1[cs.ET]. (2019)

  25. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature. 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  Google Scholar 

  26. Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). https://doi.org/10.1038/nnano.2008.160

    Article  Google Scholar 

  27. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009). https://doi.org/10.1063/1.3236506

    Article  ADS  Google Scholar 

  28. Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., Kwok, W.K.: Structural properties of oxygen-deficient YBa2Cu3O7−δ. Phys. Rev. B. 41(4), 1863–1877 (1990). https://doi.org/10.1103/PhysRevB.41.1863

    Article  ADS  Google Scholar 

  29. Moreo, A., Yunoki, S., Dagotto, E.: Phase separation scenario for manganese oxides and related materials. Science. 283, 2034 (1999). https://doi.org/10.1126/science.283.5410.2034

    Article  Google Scholar 

  30. Ye, J., Nakamura, K.: Quantitative structure analyses of YBa2Cu3O7-δ thin films: determination of oxygen content from x-ray-diffraction patterns. Phys. Rev. B. 48, 7554 (1993). https://doi.org/10.1103/PhysRevB.48.7554

    Article  ADS  Google Scholar 

  31. Arpaia, R., Andersson, E., Trabaldo, E., Bauch, T., Lombardi, F., et al.: Probing the phase diagram of cuprates with YBa2Cu3O7−δ thin films and nanowires. Phys. Rev. Materials. 2, 024804 (2018). https://doi.org/10.1103/PhysRevMaterials.2.024804

    Article  ADS  Google Scholar 

  32. Schuller, I.K., D.G. Hin S, Beno, M., D.W. Capone,II, L, Soderholm, J.-P.L., Bruynseraede, Y., Segre, C.U., Zhang, K.: Solid State Commun. 63, 385 (1987). https://doi.org/10.1016/0038-1098(87)91134-3

    Article  ADS  Google Scholar 

  33. Fior, T., Gurvitch, M., Cava, R.J., Espinosa, G.P.: Effect of oxygen desorption on electriiccal transport in YBa2Cu307-d. Phys. Rev. B. 36, 7262 (1987). https://doi.org/10.1103/physrevb.36.7262

    Article  ADS  Google Scholar 

  34. Burlet, P., Bourges, J., Bossy, E., Elkaim, J.Y., Henry, J.P., Lauriat, V.P., Plakhty, L.P., Regnault, J., Schweizer, Y., Sidis, C., Vettier, F., Yakhou, J.: Supercond. 9, 357 (1996). https://doi.org/10.1007/BF00727278

    Article  ADS  Google Scholar 

  35. Bartelt, N.С., Einstein, Т.L., Wille, L.T.: Phase diagram and critical properties of a two-dimensional lattice-gas model of oxygen ordering in YBa2Cu3Ox. Phys. Rev. B. 40, 10759 (1989). https://doi.org/10.1103/PhysRevB.40.10759

    Article  ADS  Google Scholar 

  36. Poulsen, H.F., Niels Hessel Andersen,Jf,Jrgen Vitting Andersen, Henrik Bohrt§& Ole G: Mouritse3nt: relation between superconducting transition temperature and oxygen ordering in YBa2Cu30 6 +x. Letter Nature. 349, 594 (1991). https://doi.org/10.1038/349594a0

    Article  ADS  Google Scholar 

  37. Zubkus, V. E, E. E. Tornau. S. Lapinskas and P. J. Kundrotas, Phase diagrams of oxygen ordering in high-temperature superconductors RBazCu3O7, Phys. Rev. B, 43, 13112 (1991). https://doi.org/10.1103/PhysRevB.43.113112

  38. Picard, C., Gerdanian, P., Moudden, H., Blanchin, G.: The YBa2Cu3Oz phase diagram, radiation effects and defects in solids. 137, 337 (1995). https://doi.org/10.1080/104201595082227

  39. Santoro, A., Miraglia, S., Beech, F., Sunshine, S.A., Murphy, D.W., Schneemeyer, L.F., Waszczak, J.V.: The structure and properties of Ba2YCu3O6. Mater. Res.Bull. 22, 1007 (1987). https://doi.org/10.1016/0025-5408(87)90100-0

    Article  Google Scholar 

  40. Sirotkin, V.V., Tulina, N.A., Rossolenko, A.N., Borisenko, I.Y.: Numerical simulation of resistive switching in heterostructures based on anisotropic oxide compounds. Bull. Russ. Acad. Sci. Phys. 80, 497–499 (2016). https://doi.org/10.3103/S1062873816050

    Article  Google Scholar 

Download references

Funding

The research was supported by RFBR, project no.19-29-03021 мк, and carried out within the state assignment of the Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tulina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulina, N.A., Borisenko, I.Y., Shmytko, I.M. et al. The Study of Switching Dynamics in Planar Structures Based on Epitaxial Films of YBa2Cu3O7-δ High-Temperature Superconductor. J Supercond Nov Magn 33, 3695–3704 (2020). https://doi.org/10.1007/s10948-020-05641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05641-9

Keywords

Navigation