Skip to main content
Log in

Study of Critical Magnetic Behaviour in Nanocrystalline La0.65Ce0.05Sr0.3Mn1−xCuxO3 (x = 0, x = 0.05 and x = 0.15) Prepared by Pechini Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2022

This article has been updated

Abstract

The critical bahaviour of La0.65Ce0.05Sr0.3Mn1xCuxO3 (x = 0, x = 0.05 and x = 0.15) manganite prepared by the sol–gel-based Pechini method has been investigated by measuring the magnetization around the Curie temperature, TC. The obtained critical exponents (beta, gamma and delta) have been calculated using the modified Arrott plot and Kouvel–Fisher techniques, scaling hypothesis and critical isotherm analysis. The estimated results for the parent compound and x = 0.05 are in between mean-field and the 3D Heisenberg models. The values of β, γ and δ will shift gradually toward those of the 3D Heisenberg theory when x = 0.15, suggesting that the short-range FM order and magnetic inhomogeneity are favoured in Cu-doped samples. The non-monotonous temperature variation in effective exponents (βeff(ɛ) and γeff(ɛ)) proves the existence of a magnetic disorder in the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Tokura, Y.: Rep. Prog. Phys. 69, 797–851 (2006)

    Article  ADS  Google Scholar 

  2. Oumezzine, M., Sales, H.B., Selmi, A., Hlil, E.K.: RSC Adv. 9, 25627 (2019)

    Article  ADS  Google Scholar 

  3. Mazumdar, D., Das, K., Das, I.: J. Appl. Phys. 127, 093902 (2020)

    Article  ADS  Google Scholar 

  4. Zarifi, M., Kameli, P., Mansouri, M., Ahmadvand, H., Salamati, H.: Solid State Commun. 262, 20 (2017)

    Article  ADS  Google Scholar 

  5. Raoufi, T., Ma, Y., Sun, Y.: Chin. Physics B. 29(6), 067503 (2020)

  6. Ferrel-Álvarez, A.C., Domínguez-Crespo, M.A., Cong, H., Torres-Huerta, A.M., Brachetti-Sibaja, S.B., De La Cruz, W.: J. Alloys Compd. 735, 1750 (2018)

    Article  Google Scholar 

  7. Fan, J., Ling, L., Hong, B., Zhang, L., Pi, L., Zhang, Y.: Phys. Rev. B. 81, 144426 (2010)

    Article  ADS  Google Scholar 

  8. Dudka, M., Fedorenko, A.A., Blavatska, V., Holovatch, Y.: Phys. Rev. B. 93, 224422 (2016)

    Article  ADS  Google Scholar 

  9. Oumezzine, M., Peña, O., Kallel, S., Zemni, S.: Solid State Sci. 13, 1829 (2011)

    Article  ADS  Google Scholar 

  10. Motome, Y., Furukawa, N.: J. Phys. Soc. Jpn. 70, 1487 (2001)

    Article  ADS  Google Scholar 

  11. Chebaane, M., Bellouz, R., Oumezzine, M., Hlil, E.K., Fouzri, A.: RSC Adv. 8, 7186 (2018)

    Article  ADS  Google Scholar 

  12. Banerjee, S.K.: Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  13. Arrott, A., Noakes, J.E.: Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  14. Fisher, M.E.: The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30(615), 95 (1967)

    Google Scholar 

  15. Stanley, H.E.: Introduction to phase transitions and critical phenomena, pp. 1–21. Oxford University Press, London (1971)

    Google Scholar 

  16. Kouvel, J.S., Fisher, M.E.: Phys. Rev. 136, A1626 (1964)

    Article  ADS  Google Scholar 

  17. Fan, J., Ling, L., Hong, B., Zhang, L., Pi, L., Zhang, Y.: Phys. Rev. B: Condens. Matter Mater. Phys. 81, 144426 (2010)

    Article  ADS  Google Scholar 

  18. Thanh, T.D., YiKyung, Y., Ho, T.A., Manh, T.V., Phan, T.L., Tartakovsky, D.M., Yu, S.C.: IEEE Trans. Magn. 51, 1 (2015)

    Google Scholar 

  19. Widom, B.: J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  20. Dudka, M., Folk, R., Holovatch, Y.: J. Magn. Magn. Mater. 294, 305 (2005)

    Article  ADS  Google Scholar 

  21. Perumal, A., Srinivas, V., Rao, V.V., Dunlap, R.A.: Phys. Rev. Lett. 91, 137202 (2003)

    Article  ADS  Google Scholar 

  22. Kaul, S.N.: J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  23. Pramanik, A.K., Banerjee, A.: Phys. Rev. B. 79, 214426 (2009)

    Article  ADS  Google Scholar 

  24. Fisher, M.E., Ma, S.K., Nickel, B.G.: Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

Download references

Funding

The study is financially supported by the Tunisian Ministry of Higher Education and Scientific Research (core programme 03-19PEJC03 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma. Oumezzine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Author's affiliation has been updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebaane, M., Oumezzine, M., Bellouz, R. et al. Study of Critical Magnetic Behaviour in Nanocrystalline La0.65Ce0.05Sr0.3Mn1−xCuxO3 (x = 0, x = 0.05 and x = 0.15) Prepared by Pechini Method. J Supercond Nov Magn 34, 193–199 (2021). https://doi.org/10.1007/s10948-020-05568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05568-1

Keywords

Navigation