Skip to main content
Log in

d0 Half-Metallic Ferromagnetism in GeNaZ (Z = Ca, Sr, and Ba) Ternary Half-Heusler Alloys: an Ab initio Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

First-principles approach based on density functional theory was applied to investigate the structural, elastic, phonon dynamics, thermodynamics, electronic, and magnetic properties of GeNaZ (where Z = Ca, Sr and Ba) ternary Heusler alloys. The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) and the modified Becke-Johnson (mBJ-GGA) were used for the exchange-correlation energy and potential. The GeNaZ ternary Heusler alloys were found to be half-metallic and stable in the ferromagnetic α phase. The alloys were found to satisfy the criteria for dynamic and elastic stabilities. Thus, they are dynamically and elastically stable. The calculated spin-polarized electronic band structure and density of states using GGA (mBJ-GGA) reveal that the minority spin channel has metallic character and the majority spin channel having an electronic band gap of 0.26 (0.59), 0.39 (0.66), and 0.08 (0.33) eV for the GeNaCa, GeNaSr, and GeNaBa ternary Heusler alloys, respectively. The considered alloys all result in a stable ferromagnetic half-metallic ground state structure with a magnetic moment of 1 μB/cell. The density of states and the spin-charge density of these alloys show that the magnetization originates primarily from the 4p states of the Ge atoms. The GeNaZ ternary Heusler alloys do not have any magnetic elements, and their induced magnetism makes them very promising materials for spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nowotny, H., Bachmayer, K.: Monatsh. Chem. 81, 488–496 (1950)

  2. Heusler, F.: Angew. Chem. 17, 260–264 (1904)

    Google Scholar 

  3. De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  4. Amari, S., Bouhafs, B.: J. Supercond. Nov. Magn. 29, 2311–2317 (2016)

    Google Scholar 

  5. Amari, S., Mebsout, R., Méçabih, S., Abbar, B., Bouhafs, B.: Intermetallics. 44, 26–30 (2014)

    Google Scholar 

  6. Seddik, L., Amari, S., Obodo, K., Beldi, L., Faraoun, H., Bouhafs, B.: Structural Stability, Electronic and Magnetic Properties of (Ni 1− x Co x) 2 MnSn Quaternary Heusler Alloys. In: Spin, vol. 7, p. 1750010. World Scientific (2017)

  7. Amari, S., Mebsout, R., Méçabih, S., Abbar, B., Bouhafs, B.: Intermetallics. 37, 27–31 (2013)

    Google Scholar 

  8. Benatmane, S., Bouhafs, B.: Comput. Condens. Matter. 19, 543 e00371 (2019)

  9. Yong-Chun, G., Xiao-Tian, W., Rozale, H.: Chinese Physics B. 24, 067102 (2015)

    ADS  Google Scholar 

  10. Zhang, L., Wang, X., Rozale, H., Lu, J.-w., Wang, L.-y.: J. Supercond. Nov. Magn. 28, 3701–3705 (2015)

    Google Scholar 

  11. Sun, L.: J. Supercond. Nov. Magn. 31, 3239-3244 (2018)

  12. Du, J., Dong, S., Wang, X., Zhao, H., Wang, L., Feng, L.: AIP Adv. 6, 105308 (2016)

    ADS  Google Scholar 

  13. Du, J., Dong, S., Lu, Y.-L., Zhao, H., Feng, L., Wang, L.: J. Magn. Magn. Mater. 428, 250–254 (2017)

    ADS  Google Scholar 

  14. Rostami, M., Afkani, M., Torkamani, M.R., Kanjouri, F.: Mater. Chem. Phys. 248, 122923 (2020)

    Google Scholar 

  15. Wei, X.-P., Chu, Y.-D., Sun, X.-W., Deng, J.-B., Xing, Y.-Z.: Superlattice. Microst. 74, 70–77 (2014)

    ADS  Google Scholar 

  16. Chen, J., Gao, G., Yao, K., Song, M.: J. Alloys Compd. 509, 10172–10178 (2011)

    Google Scholar 

  17. Rozale, H., Amar, A., Lakdja, A., Moukadem, A., Chahed, A.: J. Magn. Magn. Mater. 336, 83–87 (2013)

    ADS  Google Scholar 

  18. Umamaheswari, R., Vijayalakshmi, D., Kalpana, G.: Phys. B Condens. Matter. 448, 256–259 (2014)

    ADS  Google Scholar 

  19. Benabboun, R., Mesri, D., Tadjer, A., Lakdja, A., Benhelal, O.: J. Supercond. Nov. Magn. 28, 2881–2890 (2015)

    Google Scholar 

  20. Lakdja, A., Rozale, H., Chahed, A., Benhelal, O.: J. Alloys Compd. 564, 8–12 (2013)

    Google Scholar 

  21. Malsawmtluanga, T., Vanlalruata, B., Thapa, R.: Investigation of half-metallicity of GeKMg and SnKMg by Using mBJ potential method. J. Phys. Conf. Ser. 765, 012018 (2016) IOP Publishing

  22. Lakdja, A., Rozale, H., Sayede, A., Chahed, A.: J. Magn. Magn. Mater. 354, 235–238 (2014)

    ADS  Google Scholar 

  23. Graf, T., Felser, C., Parkin, S.S.: Prog. Solid State Chem. 39, 1–50 (2011)

    Google Scholar 

  24. Graf, T., Casper, F., Winterlik, J., Balke, B., Fecher, G.H.: C. Felser. Z. Anorg. Allg. Chem. 635, 976–981 (2009)

    Google Scholar 

  25. Žutić, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2004)

    ADS  Google Scholar 

  26. Hirohata, A., Takanashi, K.: J. Phys. D. Appl. Phys. 47, 193001 (2014)

    ADS  Google Scholar 

  27. Galanakis, I.: Theory of Heusler and full-Heusler compounds. In: Felser, C., Hirohata, A. (eds.) Heusler Alloys, vol. 222, pp. 3–36. Springer International Publishing (2016)

  28. Westerholt, K., Bergmann, A., Grabis, J., Nefedov, A., Zabel, H.: Lecture Notes in Physics, p. 676. Springer (2005)

  29. Hirohata, A., Sagar, J., Lari, L., Fleet, L.R., Lazarov, V.K.: Applied Physics A. 111, 423–430 (2013)

    Google Scholar 

  30. Heusler, F., Take, E.: Trans. Faraday Soc. 8, 169–184 (1912)

    Google Scholar 

  31. P.J. Webster, K.R.A. Ziebeck, Co2YZ with Y = 3d element: datasheet from Landolt-Börnstein - group III condensed matter · Volume 19C: Alloys and Compounds of d-Elements with Main Group Elements. Part 2 in SpringerMaterials (https://doi.org/10.1007/10353201_48), in: H.P.J. Wijn (Ed.) Springer-Verlag Berlin Heidelberg, 1988

  32. P. Webster, K. Ziebeck, K.-U. Neumann in Magnetic Properties of Metals, Landolt-Börnstein, New Series, Group III, Vol. 32/c, ed by HRJ Wijn, in: Springer, Berlin, 2001

  33. Beldi, L., Bendaoud, H., Obodo, K., Abbar, B., Bouhafs, B.: Mater. Chem. Phys. 237, 121875 (2019)

    Google Scholar 

  34. Beldi, L., Bendaoud, H., Obodo, K., Bouhafs, B., Méçabih, S., Abbar, B.: Comput. Condens. Matter. 17, e00336 (2018)

  35. Beldi, L., Bendaoud, H., Obodo, K., Abbar, B., Bouhafs, B.: J. Supercond. Nov. Magn. 32, 2031–2044 (2019)

    Google Scholar 

  36. Benaissa, H., Benatmane, S., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Bouhafs, B.: Ferromagnetism in RaBi with zinc-blende and wurtzite structures: ab-initio prediction. In: Spin, vol. 8, p. 1850008. World Scientific (2018)

  37. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864–B871 (1964)

    ADS  Google Scholar 

  38. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  39. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz,Techn. Universität Wien, Austria), 2018

  40. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  41. Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  42. Moulkhalwa, H., Zaoui, Y., Obodo, K., Belkadi, A., Beldi, L., Bouhafs, B.: J. Supercond. Nov. Magn. 32, 635–649 (2019)

    Google Scholar 

  43. Sadouki, H., Belkadi, A., Zaoui, Y., Amari, S., Obodo, K., Beldi, L., Bouhafs, B.: Int. J. Comp. Mater. Sci. Engn.. 7, 1850015 (2018)

  44. Sadouki, H., Belkadi, A., Zaoui, Y., Beldi, L., Bouhafs, B., Méçabih, S., Abbar, B.: Comput. Condens. Matter. 16, e00318 (2018)

  45. Abbouni, N., Amari, S., Sadouki, H., Belkadi, A., Zaoui, Y., Obodo, K., Beldi, L., Bouhafs, B.: Ab-Initio Prediction of Intrinsic Half-Metallicity in Binary Alkali–Metal Chalcogenides: KX (X= S, Se and Te). In: Spin, vol. 8, p. 1850020. World Scientific (2018)

  46. Becke, A.D., Johnson, E.R.: J. Chem. Phys. 124, 221101 (2006)

    ADS  Google Scholar 

  47. Koller, D., Tran, F., Blaha, P.: Phys. Rev. B. 83, 195134 (2011)

    ADS  Google Scholar 

  48. Murnaghan, F.D.: Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    ADS  Google Scholar 

  49. Blöchl, P.E., Jepsen, O., Andersen, O.K.: Phys. Rev. B. 49, 16223 (1994)

    ADS  Google Scholar 

  50. Feynman, R.P.: Phys. Rev. 56, 340 (1939)

    ADS  Google Scholar 

  51. Togo, A., Tanaka, I.: Scr. Mater. 108, 1–5 (2015)

    Google Scholar 

  52. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188–5192 (1976)

    ADS  MathSciNet  Google Scholar 

  53. Holgate, S.A.: Understanding Solid State Physics. CRC Press (2009)

  54. Ashcroft, N.: Saunders College, Philadelphia (1976)

  55. J. Cederström, J. Van Humbeeck, Le Journal de Physique IV 5 (1995) C2–335-C332–341

  56. Ehara, K., Tanaka, H., Kanno, Y.: IEEJ Trans. Electr. Electron. Eng. 2, 313–318 (2007)

    Google Scholar 

  57. Hill, R.: Proc. Phys. Soc. Section A 65, 349 (1952)

  58. Chung, D.H., Buessem, W.R.: J. Appl. Phys. 39, 2777–2782 (1968)

    ADS  Google Scholar 

  59. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press (1954)

  60. S. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823–843

  61. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Insulators Handbook. Naukova Dumka, Kiev, p. 60-180 (1983)

  62. Haines, J., Leger, J., Bocquillon, G.: Annu. Rev. Mater. Res. 31, 1–23 (2001)

    ADS  Google Scholar 

  63. Murtaza, G., Gupta, S., Seddik, T., Khenata, R., Alahmed, Z., Ahmed, R., Khachai, H., Jha, P., Omran, S.B.: J. Alloys Compd. 597, 36–44 (2014)

    Google Scholar 

  64. Obodo, K.O.: N. Chetty. J. Nucl. Mater. 440, 229–235 (2013)

    ADS  Google Scholar 

  65. H. Siethoff, K. Ahlborn, Physica Status Solidi (b) 190 (1995) 179–191

  66. Benatmane, S., Bendaoud, H., Beldi, L., Bouhafs, B., Méçabih, S., Abbar, B.: J. Supercond. Nov. Magn. 31, 2767–2776 (2018)

    Google Scholar 

  67. Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry. Cornell University Press (1960)

Download references

Acknowledgments

This work was supported by the Directorate-General for Scientific Research and Technological Development (DGRSDT) of Algeria. B.B acknowledges the Algerian Academy of Sciences and Technology (AAST) and the Abdus-Salam International Center for Theoretical Physics (ICTP, Trieste, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bouhafs.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beldi, L., Zaoui, Y., Obodo, K.O. et al. d0 Half-Metallic Ferromagnetism in GeNaZ (Z = Ca, Sr, and Ba) Ternary Half-Heusler Alloys: an Ab initio Investigation. J Supercond Nov Magn 33, 3121–3132 (2020). https://doi.org/10.1007/s10948-020-05563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05563-6

Keywords

Navigation