Skip to main content
Log in

Enhancement of Virtual Magnetic Moment Formation in ZnO NPs by Li+ Ion Doping

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Lithium-doped ZnO (Zn1-xLixO) nanoparticles were fabricated using the hydrothermal process. XRD patterns showed that the Li+ ions substituted into different lattice sites depending on the level of the doping of Li+ into this semiconductor. The Williamson-Hall plots of the same XRD showed that the strains and sizes of the nanoparticles do not changed monotonically. Using the Tau plot to analyze the effects of the Li+ substitution on the optical (UV-Vis absorption) by the nanoparticles, the changes in the observed values of the energy gaps of the different doped semiconductor were seen not to decrease continuously. A VSM (vibrating sample magnetometer) was used to measure the hysteresis loops of our Zn1-xLixO NPs (originally, the nonmagnetic semiconductor XnO doped with the nonmagnetic Li+ ions). Our VSM measurements shows that the saturation magnetization (emu/g) and coercive force of these nanoparticles increased or decreased, respectively, as the level of Li+ doping increased. Photoluminescence emission at ≈ 510 nm showed that the Li+ doping led to the creation of more zinc vacancies, which in turn generates more virtual magnetic moments. Our results support the vacancy-induced d0 electron model of ferromagnetism in nonmagnetic ion-doped ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nat. 430, 630 (2004). https://doi.org/10.1038/430630a

    Article  ADS  Google Scholar 

  2. Hong, N.H., Sakai, J., Poirot, N., Brize, V.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B. 73(13), 132404 (2006). https://doi.org/10.1103/PhysRevB.73.132404

    Article  ADS  Google Scholar 

  3. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B. 74(16), 161306(R) (2006). https://doi.org/10.1103/PhysRevB.74.161306

    Article  ADS  Google Scholar 

  4. Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D.: Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys. 105(11), 113928 (2009). https://doi.org/10.1063/1.3143103

    Article  ADS  Google Scholar 

  5. Liu, W., Li, W., Hu, Z., Tang, Z., Tang, X.: Effect of oxygen defects on ferromagnetic of undoped ZnO. J. Appl. Phys. 110(1), 013901 (2011). https://doi.org/10.1063/1.3601107

    Article  ADS  Google Scholar 

  6. Zuo, X., Yoon, S.D., Yang, A., Duan, W.H., Vittoria, C., Harris, V.G.: Ferromagnetism in pure wurtzite zinc oxide. J. Appl. Phys. 105(7), 07C508 (2009). https://doi.org/10.1063/1.3062822

    Article  Google Scholar 

  7. Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B. 77(20), 205411 (2008). https://doi.org/10.1103/PhysRevB.77.205411

    Article  ADS  Google Scholar 

  8. Limpijumnong, S., Zhang, S.B., Wei, S.H., Park, C.H.: Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped-type zinc oxide. Phys. Rev. Lett. 92(15), 155504 (2004). https://doi.org/10.1103/PhysRevLett.92.155504

    Article  ADS  Google Scholar 

  9. Yi, J.B., Lim, C.C., Xing, G.Z., Fan, H.M., Van, L.H., Huang, S.L., Yang, K.S., Huang, X.L., Qin, X.B., Wang, B.Y., Wu, T., Wang, L., Zhang, H.T., Gao, X.Y., Lui, T., Wee, A.T.S., Feng, Y.O., Ding, J.: Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 104(13), 137201 (2010). https://doi.org/10.1103/PhysRevLett.104.137201

    Article  ADS  Google Scholar 

  10. Wang, Q.J., Wang, J.B., Zhong, X.L., Tan, Q.H., Hu, Z., Zhou, Y.C.: Magnetism mechanism in ZnO and ZnO doped with nonmagnetic elements X (X = Li, Mg, and Al): a first-principles study. Appl. Phys. Lett. 100(13), 132407 (2012). https://doi.org/10.1063/1.3698096

    Article  ADS  Google Scholar 

  11. Lu, Y.B., Dai, Y., Guo, M., Yu, L., Huang, B.: Investigation of magnetic properties induced by group-V element in doped ZnO. Phys. Chem. Chem. Phys. 15(14), 5208 (2013). https://doi.org/10.1039/C3CP44047H

    Article  Google Scholar 

  12. Lee, J.S., Cha, S.N., Kim, J.M., Nam, H.W., Lee, S.H., Ko, W.B., Wang, K.L., Park, J.G., Hong, J.P.: p-type conduction characteristics of lithium-doped ZnO nanowires. Adv. Mater. 23(36), 4183–4187 (2011). https://doi.org/10.1002/adma.201101376

    Article  Google Scholar 

  13. Park, C.H., Zhang, S.B., Wei, S.H.: Origin of p-type doping difficulty in ZnO: the impurity perspective. Phys. Rev. B. 66(7), 073202 (2002). https://doi.org/10.1103/physrevb.66.073202

    Article  ADS  Google Scholar 

  14. Wang, D., Zhou, J., Liu, G.: Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol–gel method. J. Alloys Comp. 481, 802–805 (2009). https://doi.org/10.1016/j.jallcom.2009.03.111

    Article  Google Scholar 

  15. Awan, S.U., Hasanain, S.K., Bertino, M.F., Jaffari, G.H.: Ferromagnetism in Li doped ZnO nanoparticles: the role of interstitial Li. J. Appl. Phys. 112(10), 103924 (2012). https://doi.org/10.1063/1.4767364

    Article  ADS  Google Scholar 

  16. Gao, H.X., Xia, J.B.: Effect of Li-doping on the magnetic properties of ZnO with Zn vacancies. J. Appl. Phys. 111(9), 093902 (2012). https://doi.org/10.1063/1.4707888

    Article  ADS  Google Scholar 

  17. Awan, S.U., Hasanain, S.K., Anjum, D.H., Awan, M.S., Shah, S.A.: Room temperature p-type conductivity and coexistence of ferroelectric order in ferromagnetic Li doped ZnO nanoparticles. J. Appl. Phys. 116(16), 164109 (2014). https://doi.org/10.1063/1.4900413

    Article  ADS  Google Scholar 

  18. Ghosh, S., Khan, G.G., Das, B., Mandal, K.: Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires. J. Appl. Phys. 109(12), 123927 (2011). https://doi.org/10.1063/1.3601340

    Article  ADS  Google Scholar 

  19. Ghosh, S., Khan, G.G., Mandal, K., Thapa, S., Nambissan, P.M.G.: Positron annihilation studies of vacancy-type defects and room temperature ferromagnetism in chemically synthesized Li-doped ZnO nanocrystals. J. Alloys Comp. 590, 396–405 (2014). https://doi.org/10.1016/j.jallcom.2013.12.149

    Article  Google Scholar 

  20. Silambarasan, M., Saravanan, S., Ohtani, N., Soga, T.: Structural and optical studies of pure and Ni-doped ZnO nanoparticles synthesized by simple solution combustion method. Japn. J. Appl. Phys. 53(5S1), 05FB16 (2014). https://doi.org/10.7567/jjap.53.05fb16

    Article  Google Scholar 

  21. Rakkesh, R.A., Balakumar, S.: Structural, electrical transport and optical studies of Li ion doped ZnO nanostructures. Proc. Appl. Ceramics. 8(1), 7–13 (2014). https://doi.org/10.2298/PAC1401007R

    Article  Google Scholar 

Download references

Funding

We are grateful for the financial support from Science Achievement Scholarship of Thailand and Department of Physics, Faculty of Science, Kasetsart University, for the grant. Finally, we also thank to King Mongkut’s University of Technology Thonburi for the financial support provided by through the KMUTT 55th Anniversary Commemorative Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirikanjana Thongmee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanyawong, S., Tang, IM., Herng, T.S. et al. Enhancement of Virtual Magnetic Moment Formation in ZnO NPs by Li+ Ion Doping. J Supercond Nov Magn 33, 2851–2859 (2020). https://doi.org/10.1007/s10948-020-05547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05547-6

Keywords

Navigation