Skip to main content
Log in

Interaction field in nanocrystalline Sm-Fe-Ti alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Alloys of Sm-Fe-Ti were synthesized by mechanical milling for 5 h; the hysteresis loop for nanocrystalline Sm-Fe-Ti alloys showed bistable behavior, which is partly repressed because of the presence of an effective field. The magnetic properties of remanence for nanocrystalline Sm-Fe-Ti alloys were measured to study the interactions between nanograins. Henkel et al. confirmed the structural disorder of the nanocrystalline Sm-Fe-Ti alloys obtained after 5 h of mechanical milling, while for nanocrystalline Sm-Fe-Ti alloys, obtained by mechanical milling for 5 h and annealing, the predominant effects were due to the mean field. Mössbauer spectroscopy was used to study magnetic interactions in the nanocrystalline Sm-Fe-Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pinkerton, F., Herbst, J., Meyer, M.: Magnetostriction and torque response of Tb0.5Dy0.5Fe2/Fe composites. J. Appl. Phys. 87, 8653–8657 (2000). https://doi.org/10.1063/1.373592

    Article  ADS  Google Scholar 

  2. Huang, J., Nan, C.W., Li, R.-M.: Micromechanics approach for effective magnetostriction of composite materials. J. Appl. Phys. 91, 9261–9266 (2002). https://doi.org/10.1063/1.1475357

    Article  ADS  Google Scholar 

  3. Wang, B.W., Lee, W.J., Song, J.S., Min, B.K., Hao, Y.M.: Structure, magnetic properties, and magnetostriction of Sm0.5R0.5(Fe1-xCox)2 compounds (R=Nd, Pr). J. Appl. Phys. 91, 9246–9250 (2002)

    Article  ADS  Google Scholar 

  4. Pekka, R.: Microstructure and magnetostriction of Fe1-xTbx alloys prepared by solid-state synthesis. J. Magn. Magn. Mater. 257–268 (2003). https://doi.org/10.1016/S0304-8853(03)00274-9

  5. Yang, H., Wang, H., Luo, H.M., Feldmann, D.M., Dowden, P.C.: Structural and dielectric properties of epitaxial Sm2O3 thin films. Appl. Phys. Lett. 92(2008), 062905. https://doi.org/10.1063/1.2842416

  6. Ghosh, P., Kundu, S., Kar, A., Patra, K.S.A.: Synthesis and characterization of different shaped Sm2O3 nanocrystals. J. Phys. D. Appl. Phys. 43(40), 405401 (2010) 1–7). https://doi.org/10.1088/0022-3727/43/40/405401

    Article  Google Scholar 

  7. Gray, N.W., Tiwari, A.: Dynamic superparamagnetism in cobalt-doped Sm2O3 thin films, J. Appl. Phys. 110 033903–1–033903–7 (2011). https://doi.org/10.1063/1.3610790

  8. Michel, C.R., Martínez-Preciado, A.H., Parra, R., Aldao, C.M.: Novel CO2 and CO gas sensor based on nanostructured Sm2O3 hollow microspheres. Sensors Actuators B Chem. 202, 1220–1228 (2014). https://doi.org/10.1016/j.snb.2014.06.038

    Article  Google Scholar 

  9. Chiao, C.W., Yew, C.K., Zainuriah, H.: Sm2O3 gate dielectric on Si substrate. Mater. Sci. Semicond. Process. 13(2010), 303–314. https://doi.org/10.1016/j.mssp.2011.02.001

  10. Song, T., Roshko, R.M.: Preisach model for systems of interacting superparamagnetic particles. IEEE Trans. Magn. 36(2000), 223–230. https://doi.org/10.1109/20.822533

  11. Ranjbar, M., Piramanayagam, S.N., Suzi, D., Aung, K., Sbiaa, R., Kay, Y., Wong, S., Chong, C.: Antiferromagnetically coupled patterned media and control of switching field distribution. IEEE Trans. Magn. 46, 1787–1790 (2010). https://doi.org/10.1109/TMAG.2010.2043226

    Article  ADS  Google Scholar 

  12. MØrup, S., Frandsen, C., BØdker, F. et al.: Hyperfine interactions 144: 347. (2002). https://doi.org/10.1023/A:1025430411360

  13. Liu, J., Ren, W., Zhao, X. G., Liu, W., Zhang, Z.: Structure and magnetic properties of mechanically alloyed Tb0.7Pr0.3(Fe0.9B0.1)1.93 and the magnetostriction of its epoxy composites. J. Appl. Phys. 97. (2005). doi.https://doi.org/10.1063/1.1851751

  14. Buschow, K.H.J, de Boer, F.R.: Physics of Magnetism and Magnetic Materials. Magnetostrictive Materials, Kluwer Academic Publishers, (2004). doi.https://doi.org/10.1007/b100503

  15. Martínez Huerta, J.M., De La Torre Medina, J., Piraux, L., Encinas, A.: Configuration dependent demagnetizing field in assemblies of interacting magnetic particles. J. Phys. Condens. Matter. 25, 226003 (2013). https://doi.org/10.1088/0953-8984/25/22/226003

    Article  ADS  Google Scholar 

  16. Bertotti, G.: Hysteresis in Magnetism, Academic Press, Pages 103–125, ISBN 9780120932702 (1998). https://doi.org/10.1016/B978-012093270-2/50052-0

  17. Hernando, A.: Exchange interaction in multiphase systems, in Magnetic Hysteresis in Novel Magnetic Materials, Springer Netherlands Publisher, pp. 609–618 (1997)

  18. Vázquez, M., Gómez-Polo, M.C., Chen, D.-X., Hernando, A.: Magnetic bistability of amorphous wires and sensor applications. IEEE Trans. Magn. 30, 907–912 (1994). https://doi.org/10.1109/20.312442

    Article  ADS  Google Scholar 

  19. Martínez-Huerta, J.M., Torre-Medina, J.L., Piraux, L., Encinas-Oropesa, A.: Self-consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution. J. Appl. Phys. 111(2012), 083914–083911. https://doi.org/10.1063/1.4704397

  20. Hejda, P., Petrovslj, E., Zelinka, T.: The Preisach diagram, Wohlfarth’s Remanence formula and magnetic interactions. IEEE Trans. Magn. 30, 896–898 (1994). https://doi.org/10.1109/20.312439

    Article  ADS  Google Scholar 

  21. Morrish, A.H.: Magnetization processes in composites systems, in Magnetic Hysteresis in Novel Magnetic Materials, Springer Netherlands Publisher, pp. 619–630 (1997). https://doi.org/10.1007/978-94-011-5478-9

  22. Pardav-Horvath, M., Vertesy, G.: Minor loop behavior in classical Preisach hysteretic systems. IEEE Trans. Magn. 33, 3975–3977 (1997). https://doi.org/10.1109/20.619634

    Article  ADS  Google Scholar 

Download references

Acknowledgments

J. L. Hidalgo-González thanks Universidad Autónoma de San Luis Potosí by accepting the executions of a postdoctoral stay with a scholarship CONACYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Hidalgo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteaga, D.J., Hidalgo, J.L., García, J. et al. Interaction field in nanocrystalline Sm-Fe-Ti alloys. J Supercond Nov Magn 33, 2009–2015 (2020). https://doi.org/10.1007/s10948-020-05444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05444-y

Keywords

Navigation