Skip to main content
Log in

Effects of Oxygen Vacancy on the Magnetic Properties of Ni-Doped SnO2 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We studied the ferromagnetism of Ni-doped SnO2 with and without oxygen vacancy (VO) by experiments and calculations. Sn0.96Ni0.04O2 nanocrystalline powder prepared by the sol-gel method exhibits room-temperature ferromagnetism, and the vacuum annealing reduces its saturation magnetizations. The density functional theory (DFT) calculations show that the doped Ni atom can introduce a local magnetic moment of about 2.0 μB in SnO2 (110) surface, which is ascribed to the spin-polarization of Ni 3d and O 2p electrons. The type of preferential magnetic coupling of Ni-doped SnO2 (110) surface depends upon the distributions of Ni dopants, and ferromagnetic coupling is more favorable in most cases. Introduction of VO obviously weakens the ferromagnetic interaction of Ni-doped SnO2 (110) surface, which can give a reasonable explanation for our experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., et al.: Spintronics: a spin-based electronics vision for the future. Science. 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  2. Burch, K.S., Awschalom, D.D., Basov, D.N.: Optical properties of III-Mn-V ferromagnetic semiconductors. J Magn Magn Mater. 320, 3207–3228 (2008)

    Article  ADS  Google Scholar 

  3. Sato, K., Bergqvist, L., Kudrnovský, J., et al.: First-principles theory of dilute magnetic semiconductors. Rev Mod Phys. 82, 1633–1690 (2010)

    Article  ADS  Google Scholar 

  4. Matsumoto, Y., Murakami, M., Shono, T., et al.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  5. Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett. 79, 988–990 (2001)

    Article  ADS  Google Scholar 

  6. Huang, L.M., Rosa, A.L., Ahuja, R.: Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys Rev B. 74, 075206 (2006)

    Article  ADS  Google Scholar 

  7. Yang, K., Dai, Y., Huang, B.: Density functional characterization of the electronic structure and visible-light absorption of Cr-doped anatase TiO2. ChemPhysChem. 10, 2327 (2009)

    Article  Google Scholar 

  8. Lamrani, A.F., Belaiche, M., Benyoussef, A., et al.: Ferromagnetism in Mo-doped TiO2 rutile from ab initio study. J Supercond Nov Magn. 25, 503–507 (2012)

    Article  Google Scholar 

  9. Jarzebski, Z.M., Morton, J.P.: Physical properties of SnO2 materials III. Optical properties. J Electrochem Soc. 123, 333C–346C (1976)

    Article  Google Scholar 

  10. Wei, W., Dai, Y., Huang, B.: Role of Cu doping in SnO2 sensing properties toward H2S. J Phys Chem C. 115, 18597–18602 (2011)

    Article  Google Scholar 

  11. Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog Surf Sci. 79, 47–154 (2005)

    Article  ADS  Google Scholar 

  12. Hays, J., Punnoose, A., Baldner, R., et al.: Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B. 72, 075203 (2005)

    Article  ADS  Google Scholar 

  13. Wang, H., Rogach, A.L.: Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater. 26, 123–133 (2013)

    Article  ADS  Google Scholar 

  14. Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., et al.: Magnetism in dilute magnetic oxide thin films based on SnO2. Phys Rev B. 74, 115307 (2006)

    Article  ADS  Google Scholar 

  15. Zhang, J., Skomski, R., Yue, L.P., et al.: Structure and magnetism of V-doped SnO2 thin films: effect of the substrate. J Phys Condens Matter. 19, 256204 (2007)

    Article  ADS  Google Scholar 

  16. Misra, S.K., Andronenko, S.I., Rao, S., et al.: Cr3+ electron paramagnetic resonance study of Sn1−xCrxO2 (0.00≤ x≤ 0.10). J Appl Phys. 105, 07C514 (2009)

    Article  Google Scholar 

  17. Kimura, H., Fukumura, T., Kawasaki, M., et al.: Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl Phys Lett. 80, 94 (2002)

    Article  ADS  Google Scholar 

  18. Kim, H.S., Bi, L., Dionne, G.F., et al.: Structure, magnetic and optical properties, and Hall effect of Co- and Fe-doped SnO2 films. Phys Rev B. 77, 214436 (2008)

    Article  ADS  Google Scholar 

  19. Aragón, F.H., Coaquira, J.A.H., Hidalgo, P., et al.: Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J Phys Condens Matter. 22, 496003 (2010)

    Article  Google Scholar 

  20. Sharma, A., Varshney, M., Kumar, S., et al.: Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater Nanotechno. 1, 6 (2011)

    Article  Google Scholar 

  21. Selvi, E.T., Sundar, S.M.: Popcorn like morphology and absence of room temperature ferromagnetism in Ni doped SnO2 nanoparticles. J Mater Sci Mater Electron. 29, 38–48 (2018)

    Article  Google Scholar 

  22. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  23. Singhal, R.K., Samariya, A., Xing, Y.T., et al.: Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor. J Alloys Compd. 496, 324–330 (2010)

    Article  Google Scholar 

  24. Samariya, A., Singhal, R.K., Kumar, S., et al.: Defect-induced reversible ferromagnetism in Fe-doped ZnO semiconductor: an electronic structure and magnetization study. Mater Chem Phys. 123, 678–684 (2010)

    Article  Google Scholar 

  25. Singhal, R.K., Samariya, A., Kumar, S., et al.: Study of defect-induced ferromagnetism in hydrogenated anatase TiO2:Co. J Appl Phys. 107, 113916 (2010)

    Article  ADS  Google Scholar 

  26. Samariya, A., Singhal, R.K., Kumar, S., et al.: Effect of hydrogenation vs. re-heating on intrinsic magnetization of Co doped In2O3. Appl Surf Sci. 257, 585–590 (2010)

    Article  ADS  Google Scholar 

  27. Singhal, R.K., Samariya, A., Kumar, S., et al.: A close correlation between induced ferromagnetism and oxygen deficiency in Fe doped In2O3. Appl Surf Sci. 257, 1053–1057 (2010)

    Article  ADS  Google Scholar 

  28. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 45, 13244–13249 (1992)

    Article  ADS  Google Scholar 

  30. Palakawong, N., Sun, Y.Y., T-Thienprasert, J., et al.: Ga acceptor defects in SnO2 revisited: a hybrid functional study. Ceram Int. 43, S364–S368 (2017)

    Article  Google Scholar 

  31. Oviedo, J., Gillan, M.J.: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf Sci. 463, 93–101 (2000)

    Article  ADS  Google Scholar 

  32. Rahman, G., García-Suárez, V.M., Morbec, J.M.: Intrinsic magnetism in nanosheets of SnO2: a first-principles study. J Magn Magn Mater. 328, 104–108 (2013)

    Article  ADS  Google Scholar 

  33. Ruilin, H., Hui, Y., Dingdi, W., et al.: First-principles study of magnetic properties of stoichiometric and O deficient low-index surfaces of rutile SnO2 and TiO2. J Magn Magn Mater. 374, 197–204 (2015)

    Article  Google Scholar 

  34. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630–630 (2004)

    Article  ADS  Google Scholar 

  35. Hong, N.H., Sakai, J., Poirot, N., et al.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys Rev B. 73, 132404 (2006)

    Article  ADS  Google Scholar 

  36. Espinosa, A., Sánchez, N., Sánchez-Marcos, J., et al.: Origin of the magnetism in undoped and Mn-doped SnO2 thin films: Sn vs oxygen vacancies. J Phys Chem C. 115, 24054–24060 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604234, 51602214, and 11404236), Special Funds of the National Natural Science Foundation of China (Grant No. 11447189), and the Natural Science Foundation of Shanxi Province (201801D221128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjia Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhou, M., Zhang, Y. et al. Effects of Oxygen Vacancy on the Magnetic Properties of Ni-Doped SnO2 Nanoparticles. J Supercond Nov Magn 32, 3509–3516 (2019). https://doi.org/10.1007/s10948-019-5094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5094-4

Keywords

Navigation