Skip to main content
Log in

Mössbauer Study and Curie Temperature Configuration on Sintering Nano-Ni-Zn Ferrite Powder

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Variations of Curie temperature and strength of magnetic phases with sintering temperature and Ni concentration is investigated in the present work. The AC susceptibility studies show a decrease in Curie temperature (TC) with an increase in Ni concentration in the samples. Comparison of Curie temperatures with the reported results reveals that samples in the present work show higher TC enabling high thermal stability. The Mössbauer spectra of nano- and sintered Ni-Zn ferrite samples were recorded at room temperature to monitor the local environment around Fe cations through Mössbauer hyperfine parameters as a function of composition and sintering temperatures. The increase in sharpness of the Mössbauer sextet with an increase in Ni concentration and sintering temperature corroborate improvement in homogeneity and ferrimagnetic ordering. The results of hyperfine parameters offer the possibility of having close view on configuring Curie temperature through monitoring hyperfine field by altering sintering temperature and/or Ni concentration. As the temperature dependence of magnetic and magnetoelastic properties is strongly influenced by the Curie temperature, the successful possible configuration of Curie temperature in the present work can be further investigated for desired sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lumina, S.M.M., Anand, S., Maria, V., Vinosel, Asisi, J.M., Pauline, S.: J. Mater. Sci. Mater. Electron. (2018)

  2. Brito, V.L.O., de Almeida, L.F.A., Hirata, A.K., Migliano, A.C.C.: Progress in electromagnetics. Res. Lett. 13, 103–112 (2010)

    Google Scholar 

  3. Kachniarz, M., Bienkowski, A., Salach, J., Szewczyk, A.: Acta Phys. Pol. A. 133, 1056–1059 (2018)

    Article  Google Scholar 

  4. Paulsen, J.A., Lo, C.C.H., Snyder, J.E., Ring, A.P., Jones, L.L., Jiles, D.C.: IEEE Trans. Magn. 39-5, 3316–3318 (2003)

    Article  ADS  Google Scholar 

  5. Kumar, M.V.S., Shankarmurthy, G.J., Melagiriyappa, E., Nagaraja, K.K., Jayanna, H.S., Telenkov, M.P.: J. Mater. Sci. Mater. Electron. 29, 12795–12803 (2018)

    Article  Google Scholar 

  6. Hua, S., Huaiwu, Z., Xiaoli, T., Xinyuan, X.: J. Magn. Magn. Mater. 283, 157–163 (2004)

    Article  Google Scholar 

  7. Kothawale, M.M., Tangsali, R.B., Naik, G.K., Budkuley, J.S.: J. Supercond. Nov. Magn. 25, 1907–1911 (2012)

    Article  Google Scholar 

  8. Likhite, S.D., Radhakrihnamurthy, C.: Curr. Sci. 534–536 (1966)

  9. Kothawale, M.M., Tangsali, R.B., Naik, G.K., Budkuley, J.S.: J. Supercond. Nov. Magn. 26, 3293–3298 (2013)

    Article  Google Scholar 

  10. Jadhav, S.S., Shirsath, S.E., Toksha, B.G., Shukla, S.J., Jadhav, K.M.: Chin. J. Chem. Phys. 21, 381–386 (2008)

    Article  Google Scholar 

  11. Upadhaya, R.V., Baldha, G.J., Kulkarni, R.G.: Mater. Res. Bull. 21, 10–15 (1986)

    Google Scholar 

  12. Verma, S., Joy, P.A.: Int. J. Nanosci. 7-1, 43–49 (2008)

    Article  Google Scholar 

  13. Costa, A.C.F.M., Tortella, E., Morelli, M.R., Kiminami, R.H.G.A.: J. Magn. Magn. Mater. 256, 174–182 (2003)

    Article  ADS  Google Scholar 

  14. A. Hossaina, A.K.M., Mahmuda, S.T., Seki, M., Kawai, T., Tabata, H.: J. Magn. Magn. Mater. 312, 210–219 (2007)

    Article  ADS  Google Scholar 

  15. Dhiman, R.L., Taneja, S.P., Reddy, V.R.: Adv. Condens. Matter. Phys. 1–7 (2008)

  16. Singh, L.H., Govindaraj, G., Amarendra, G., Sundar, C.S.: AIP Conf. Proc. 1447, 445–446 (2012). https://doi.org/10.1063/1.4710071

    Article  ADS  Google Scholar 

  17. Albuquerque, A.S., Ardisson, J.D., Waldemar, A.M.M., Alves, M.: J. Appl. Phys. 87, 4352–4357 (2000)

    Article  ADS  Google Scholar 

  18. Kothawale, M.M., Tangsali, R.B., Naik, G.K., Budkuley, J.S.: J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4719-3

  19. Attia, S.M.: Egypt. J. Solids. 29(2), 329–339 (2006)

    MathSciNet  Google Scholar 

  20. Blasko, J., Garcia, J.: Phys. Rev. B. 83, 104–105 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj M. Kothawale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothawale, M.M., Tangsali, R.B., Meena, S.S. et al. Mössbauer Study and Curie Temperature Configuration on Sintering Nano-Ni-Zn Ferrite Powder. J Supercond Nov Magn 32, 2141–2147 (2019). https://doi.org/10.1007/s10948-018-4935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4935-x

Keywords

Navigation