Skip to main content
Log in

Effects of Sintering Temperature on Structural, Morphological and Magnetic Properties of Strontium Ferrite Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present investigation, structural, morphological and magnetic properties of SrFe2O4 ferrite nanoparticles prepared by a sol–gel method were studied. The techniques used in this investigation were thermogravimetric analysis/differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometry (VSM) and Curie temperature analysis. The average crystallite sizes of the SrFe2O4 were calculated using the Scherrer formula and found in the range of 11–22 nm, and this can be attributed to the grain growth of the particles. The lattice parameter of SrFe2O4 nanoparticles decreased from 6.64 to 6.51 nm as the sintering temperature was raised from 600 to 900 °C. FT-IR analysis confirmed that bands in the range 430–590 cm− 1 are due to the stretching vibration of oxygen atom and metal ions (M–O) that is Fe–O confirming the formation of spinel ferrite. Surface morphology of the samples has been studied using FESEM. The elemental composition along with their relative ratios was given by EDX and was found to be in agreement with their initial calculated values. The saturation magnetization, magnetic coercivity and remanence increase with an increasing sintering temperature from 600 to 900 °C. The present study reports the Curie temperature with an amount of 551 °C of the synthesized strontium nanoferrites using the Faraday technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dutta, H., Sinha, M., Lee, Y.C., Pradhan, S.K.: Microstructure characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg–Zn ferrite by Rietveld’s analysis and electron microscopy. Mater. Chem. Phys. 105, 31–37 (2007)

    Article  Google Scholar 

  2. Parvatheeswara Rao, B., Caltun, O., Cho, W.S., Kim, C.-O., Kim, CG: Synthesis and characterization of mixed ferrite nanoparticles. J. Magn. Magn. Mater. 310, e812–e814 (2007)

    Article  Google Scholar 

  3. Mathew, D.S., Shin Juang, R.: An overview of structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  4. Chaudhury, S., Rakshit, S.K., Parida, S.C., Singh, Z., Singh Mudher, K.D., Venugopal, V.: Studies on structural and thermo-chemical behavior of MFe12O19 (M=Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J. Alloys Compd. 455, 25–30 (2008)

    Article  Google Scholar 

  5. Ghobeiti-Hasab, M., Shariati, Z.: Magnetic properties of Sr-ferrite nano-powder synthesized by sol-gel auto-combustion method. Int. J. Mater. Metall. Eng. 8, 1122–1125 (2014)

    Google Scholar 

  6. Almessiere, M.A., Dabagh, S., Slimani, Y., Chaudhary, K., Ali, J., Baykal, A.: Investigation of structural and magnetic properties on Mg1−xZnxFe2−xAlxO4 (0.0 x 0.8) nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials (2018)

  7. Davoodi, A., Hashemi, B.: Magnetic properties of Sn–Mg substituted strontium hexaferrite nanoparticles synthesized via coprecipitation method. J. Alloys Compd. 509, 5893–5896 (2011)

    Article  Google Scholar 

  8. Goldman, A.: Modern Ferrite Technology, vol. 438. Springer Science & Business Media (2005)

  9. Parekh, K.: Effect of preparative conditions on magnetic properties of CoFe2O4 nanoparticles. J. Pure Appl. Phys. 48, 581–585 (2010)

    Google Scholar 

  10. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. J. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  11. de Campos, M.F., Rodrigues, D.: High technology applications of barium and strontium ferrite magnets. Mater. Sci. Forum 881, 134–139 (2016)

    Article  Google Scholar 

  12. Cornell, R.M., Schwertmann, U.: The Iron Oxides. Willey VCH (2003)

  13. Shankar Bhavyashri, P., Raveendra, R.S., Jayasheelan, A., Prakash, C.S., Nagabhushana, B.M., Daruka Prasad, B.: Synthesis, characterization and magnetic properties of CaFe2, O4 nanoparticles by solution combustion method. Int. J. Adv. Scientif. Tech. Res 1, 445–452 (2015)

    Google Scholar 

  14. Xavier, S., Smitha Thankachan, J., Binu, P., Mohammed, E.M.: Effect of sintering temperature on the structural and magnetic properties of cobalt ferrite nanoparticles. Nanosyst. Phys. Chem. Math. 4, 430–437 (2013)

    Google Scholar 

  15. Pardeshi, S.K., Pawar, R.Y.: SrFe15 SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene. J. Mol. Catal. A: Chem. 334, 35–43 (2011)

    Article  Google Scholar 

  16. Vijayaraghavan, T., Suriyaraj, S.P., Selvakumar, R., Venkateswaran, R., Anuradha, A.: Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides. Mater. Sci. Eng. B 210, 43–50 (2016)

    Article  Google Scholar 

  17. De Haart, L., Blasse, G.: Photoelectrochemical properties of ferrites with the spinel structure. J. Electrochem. Soc. 132(12), 2933–2938 (1985)

    Article  Google Scholar 

  18. Monteil, J.B., Padel, L., Bernier, J.C.: Structure et mecanisme de cristallisation des produits obtenus par hyper trempe dans les systemes BaO.Fe2O3 et SrO.Fe2O3. J. Solid State Chem. 25, 1–8 (1978)

    Article  ADS  Google Scholar 

  19. Cristina, A., et al.: Combustion synthesis: effect of urea on the reaction and characteristics of Ni–Zn ferrite powders. J. Mater. Synth. Process. 9, 347–352 (2001)

    Article  Google Scholar 

  20. Hajaliloua, A., Hashim, M., Kahrizsangi, R.E., Mohamedkamari, H., Sarami, N.: Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40, 5881–5887 (2014)

    Article  Google Scholar 

  21. Zhaoa, L., et al.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2007)

    Article  ADS  Google Scholar 

  22. Chen, D.H., Chen, Y.Y.: Synthesis of strontium ferrite ultrafine particles using microemulsion processing. J. Colloid Interface Sci. 236, 41–46 (2000)

    Article  ADS  Google Scholar 

  23. Li, D.Y., Sun, Y.K., Gao, P.Z., Zhang, X.L., Ge, H.L.: Structural and magnetic properties of nickel ferrite nanoparticles synthesized via template-assisted sol–gel method. Ceram. Int. 40, 16529–16534 (2014)

    Article  Google Scholar 

  24. Gul, I.H., Ahmed, W., Maqsood, A.: Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270– 275 (2008)

    Article  ADS  Google Scholar 

  25. Ahangar, H.A., Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H.: Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 151, 1031–1035 (2011)

    Article  ADS  Google Scholar 

  26. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46, 2204–2207 (2011)

    Article  Google Scholar 

  27. Musavi Ghahfarokhi, E., Rostami, Z., Kazeminezhad, I.: Fabrication of PbFeMusavi PbFe12O19 nanoparticles and study of their structural, magnetic and dielectric properties. J. Magn. Magn. Mater. 399, 130–142 (2016)

    Article  ADS  Google Scholar 

  28. Kittel, C.: Phys. Rev. 70 (1946)

  29. Yang, A., Chinnasamy, C.N., Greneche, J.M., Chen, Y., Yoon, S.D., Hsu, K., Vittoria, C., Harris, V.G.: Large tunability of Néel temperature by growth-rate-induced cation inversion in Mn-ferrite nanoparticles. Appl. Phys. Lett. 94, 113109 (2009)

    Article  ADS  Google Scholar 

  30. van der Zaag, P.J., Brabers, V.A.M., Johnson, M.T., Noordermeer, A., Bongers, P.F.: Particle-size effects on the value of Tc of MnFe2O4: Evidence for finite-size scaling. Phys. Rev. B 51, 12009 (1995)

    Article  ADS  Google Scholar 

  31. Atif, M., Hasanian, S.K.: Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun. 138, 416–421 (2006)

    Article  ADS  Google Scholar 

  32. Lee, K.S., Myung, S.T., Amine, K., Yashiro, H., Sun, Y.K.: Structural and electrochemical properties of layered Li [Ni1 − 2xCoxMnx] O2 (x = 0.1–0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc. 154, 971–977 (2007)

    Article  Google Scholar 

  33. Vaqueiro, P., Lopez-Quintela, M.: Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method. Chem. Mater. 9, 2836–2841 (1997)

    Article  Google Scholar 

  34. Giorgio, S., Henry, C.R., Chapon, C.: Structure and morphology of small palladium particles (2-6 nm) supported on MgO micro-cubes. Cryst. Growth 100, 254–260 (1990)

    Article  ADS  Google Scholar 

  35. Heinemann, K., Poppa, H.: In-situ TEM evidence of lattice expansion of very small supported palladium particles. Surf. Sci. 156, 265–274 (1985)

    Article  ADS  Google Scholar 

  36. Xavier, S., Thankachan, S., Jacob, B.P., Mohammed, E.M.: Effect of sintering temperature on the structural and magnetic properties of cobalt ferrite nanoparticles. Nanosyst. Phys. Chem. Math. 4(3), 430–437 (2013)

    Google Scholar 

  37. Mamalis, A.G., Manolakos, D.E., Szalay, A., Pantazopoulos, G.: Processing of High Temperature Superconductors at High Strain Rates Technomic. Publishing Company Inc (2000)

  38. Smit, J., Wijn, H.P.J.: Ferrites Philips Technical Library. Eindhoven (1959)

  39. Rosnan, R.M., Othaman, Z., Ati, A.A., Hussin, R., Dabagh, S., Zare, S.: The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles. Mater. Sci. Forum 846, 352–357 (2015)

    Article  Google Scholar 

  40. Sebastian, R.M., Xavier, S., Mohammed, E.M.: Effect of sintering temperature on the structural magnetic and electrical properties of zinc ferrite samples. J. Nanomate. Mol. Nanotechnol. 4, 2 (2015)

    Google Scholar 

  41. Sivagurnathan, P., Sathiyamurthy, K.: Effect of temperatures on structural, morphological and magnetic properties of zinc ferrite nanoparticles. Can. Chem. Trans. 2(4), 244–254 (2016)

    Google Scholar 

  42. Aen, F., Mukhtar, A., Rana, M.U.: The role of Ga substitution on magnetic and electromagnetic properties of nano-sized W-type hexagonal ferrites. Current Appl. Phys. 13, 41–46 (2013)

    Article  ADS  Google Scholar 

  43. Israf Ud Din, S., Tasleem, A., Naeem, S., Maizatul Shaharun, M.J., Al Kaisy, G.: Zinc ferrite nanoparticle synthesis and characterization; effects of annealing temperature on the size of nanoparticles. Aust. J. Basic Appl. Sci. 7(4), 154–162 (2013)

    Google Scholar 

  44. Xi, X.W., Chen, Y.J., Zhang, X.Y.: Growth and magnetic properties of soft ferrite films by pulsed laser deposition. Vacuum 75(2), 161–167 (2004)

    Article  ADS  Google Scholar 

  45. Judith Vajaya, J., Sekaran, G., Bououdina, M.: Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceramics International (2011)

  46. Roohani, E., Arabi, H., Sarhaddi, R., Shabani, A.: Magnetic and structural properties of SrFe12−xCrxO19 (x = 0, 0.25, 0.5, 0.75, 1) hexaferrite powders obtained by sol–gel auto-combustion method. J. Supercond. Nov. Magn. (2017)

  47. Neel, L.: Proprietes Magnetiques des Ferrites: Ferrimagnetisme et Antiferromagnetisme. Ann. Phys. Paris 3, 137 (1948)

    Article  ADS  Google Scholar 

  48. Poudyal, N.: Fabrication of Superparamagnetic and Ferromagnetic Nanoparticles. The University of Texas at Arlington (2008)

  49. Li, Y., Liu, R., Zhang, Z., Xiong, C.: Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles. Materials 64, 256–259 (2000)

    Google Scholar 

  50. Kumar, L., Kar, M.: Influence of Al3+ concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011)

    Article  ADS  Google Scholar 

  51. Shaikh, P.A., Kambale, R.C., Rao, A.V., Kolekar, Y.K.: J. Magn. Magn. Mater. 322, 718 (2010)

    Article  ADS  Google Scholar 

  52. Sanchez-De Jesus, F., Bolarin-Miro, A.M., Cortes-Escobedo, C.A., Valenzuela, R., Ammar, S.: Mechanosynthesis, crystal structure and magnetic characterization of M-type SrFe12O19. Ceram. Int. 40, 4033–4038 (2014)

    Article  Google Scholar 

  53. Masti, S.A., Sharma, A.K., Vasambekar, P.N., Vaingankar, A.S.: Influence of Cd2+ and Cr3+ substitutions on the magnetization and permeability of magnesium ferrites. Magn. Magn. Mater. 305, 436 (2006)

    Article  ADS  Google Scholar 

  54. Tholkappiyan, R., Vishista, K.: Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: effect of Sr2+ dopant. Int. J. Mater. Res. 106, 127–136 (2015)

    Article  Google Scholar 

  55. Almessiere, M.A., Slimani, Y., El Sayed, H.S., Baykal, A.: Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. 44, 12511–12519 (2018)

    Article  Google Scholar 

  56. Chougule, P.K., Kumbhar, S.S., Kolekar, Y.D., Bhosale, C.H.: Enhancement in Curie temperature of nickel substituted Co-Mn ferrite. J. Magn. Magn. Mater. 372, 181–186 (2014)

    Article  ADS  Google Scholar 

  57. Smit, J., Wijn, H.P.J.: Ferrites, Philips Technical Library. Eindhoven (1959)

  58. Raghasudha, M.: Curie temperature of magnesium nano ferrites using Loria technique. Int. J. Nanosci. Nanotechnol. 1(1), 18–19 (2016)

    Google Scholar 

  59. Kader, S.S., Paul, D.P., Hoque, S.M.: Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method. Int. J. Mater. Mech. Manuf. 2, 1 (2014)

    Google Scholar 

Download references

Funding

The authors are grateful to the Shahid Chamran University of Ahvaz for providing us with the financial support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Mousavi Ghahfarokhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi Ghahfarokhi, S.E., Mohammadzadeh Shobegar, E. & Zargar Shoushtari, M. Effects of Sintering Temperature on Structural, Morphological and Magnetic Properties of Strontium Ferrite Nanoparticles. J Supercond Nov Magn 32, 1067–1076 (2019). https://doi.org/10.1007/s10948-018-4799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4799-0

Keywords

Navigation