Skip to main content
Log in

Role of Dysprosium Doping on Structural, Optical, Magnetic and Electrical Properties of ZnO Nanorods

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Well-defined Dy-doped ZnO rods were synthesized by hydrothermal route. Various studies were carried out on the synthesized rods like x-ray diffraction to confirm their hexagonal wurtzite structure; TEM, HRTEM and selected area electron diffraction to establish their rodlike structure; energy-dispersive x-ray spectroscopy analysis confirming appropriate substitution of dopant; UV-Vis spectra, which showed decrease in band gap with dopant concentration and photoluminescence study furnishing information regarding the presence of various types of defects. Further, magnetic studies were done using VSM to confirm roomtemperature ferromagnetic behaviour of both for undoped and doped ZnO rods and, the electrical studies were performed using four probe method, which confirmed that the ‘variation in resistivity with dopant concentration’ was related to crystallinity of the samples. UV-Vis spectra showed effect of dopant concentration on band gap and photoluminescence study confirms induced ferromagnetic behaviour due to Dy doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alaria, J., Venkatesan, M., Coey, J.M.D.: Magnetism of ZnO nanoparticles doped with 3d cations prepared by a solvothermal method. J. Appl. Phys. 103, 107–110 (2008). https://doi.org/10.1063/1.2833840

    Article  Google Scholar 

  2. Ferrand, D., Wasiela, A., Tatarenko, S., Cibert, J., Richter, G., Grabs, P., Schmidt, G., Molenkamp, L.W., Dietl, T.: Applications of II − VI diluted magnetic semiconductors for magneto-electronics. Solid State Commun. 119(4-5), 237–244 (2001)

    Article  ADS  Google Scholar 

  3. Khajuria, H., Ladol, J., Singh, R., Khajuria, S., Sheikh, H.N.: Surfactant assisted sonochemical and synthesis characterization of gadolinium doped zinc oxide nanoparticles. Acta Chim. Slov. 62, 849–858 (2015). https://doi.org/10.17344/acsi.2015.1558

    Article  Google Scholar 

  4. Singh, J., Vasishth, A., Verma, N.K.: Multiferroic properties of Zn1-xMgxO nanoparticles. J. Supercond. Nov. Magn. 28, 3069–3074 (2015). https://doi.org/10.1007/s10948-015-3133-3

    Article  Google Scholar 

  5. Chen, S.-H., Yu, C.-F., Chien, C.-S.: Nanoscale electrical properties of ZnO nanorods grown by chemical bath deposition. Microsc. Res. Tech. 80(7), 671–679 (2017)

    Article  Google Scholar 

  6. El Hachimi, A.G., Zaari, H., Benyoussef, A., El Yadari, M., El Kenz, A.: First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide. J. Rare Earths 32, 715–721 (2014). https://doi.org/10.1016/S1002-0721(14)60131-9

    Article  Google Scholar 

  7. Bai, S., Liu, X., Li, D., Chen, S., Luo, R., Chen, A.: Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuators B Chem. 153, 110–116 (2011). https://doi.org/10.1016/j.snb.2010.10.010

    Article  Google Scholar 

  8. Iqbal, J., Liu, X., Zhu, H., Pan, C., Zhang, Y., Yu, D., Yu, R.: Trapping of Ce electrons in band gap and room temperature ferromagnetism of Ce[sup 4 + ] doped ZnO nanowires. J. Appl. Phys. 106, 83515 (2009). https://doi.org/10.1063/1.3245325

    Article  Google Scholar 

  9. Thangeeswari, T., Murugasen, P., Velmurugan, J.: Influence of Co and Dy doping on the optical and magnetic properties of ZnO nanoparticles for DMS application. J. Supercond. Nov. Magn. 28, 2505–2515 (2015). https://doi.org/10.1007/s10948-015-3045-2

    Article  Google Scholar 

  10. Shikha, D., Mehta, V., Sood, S.C., Sharma, J.: Structural and optical properties of ZnO thin films deposited by sol–gel method: effect of stabilizer concentration. J. Mater. Sci. Mater. Electron. 26, 4902–4907 (2015). https://doi.org/10.1007/s10854-015-3000-9

    Article  Google Scholar 

  11. Jindal, S., Kaur, K., Verma, N.K., Sharma, P.: Effect of Tb3 + ion substitution on structural, optical and magnetic properties of CdS nanoparticles. J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-017-7891-5 (2017)

    Google Scholar 

  12. Aggarwal, N., Kaur, K., Vasishth, A., Verma, N.K.: Structural, optical and magnetic properties of gadolinium-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 27, 13006–13011 (2016). https://doi.org/10.1007/s10854-016-5440-2

    Article  Google Scholar 

  13. Thaslin, S., Fathima, N., Anandhan, A., Ganesan, A.R.K.P, Karthikeyan, M., Marimuthu, T.: Surface texture and luminous analysis of Sol-Gel spin coated Dy-doped ZnO thin films. IRJET 2017(04-09), 89–95 (2017)

    Google Scholar 

  14. Mofokeng, S.J., Kumar, V., Kroon, R.E., Ntwaeaborwa, O.M.: Structure and optical properties of Dy 3 + activated sol-gel ZnO-TiO2 nanocomposites. J. Alloys Compd. 711, 121–131 (2017). https://doi.org/10.1016/j.jallcom.2017.03.345

    Article  Google Scholar 

  15. Debnath, T., Das, S., Das, D., Sutradhar, S.: Optical, magnetic and dielectric properties of ZnO:Y nanoparticles synthesized by hydrothermal method. J. Alloys Compd. 696, 670–681 (2017). https://doi.org/10.1016/j.jallcom.2016.11.270

    Article  Google Scholar 

  16. Das, S., Das, S., Das, D., Sutradhar, S.: Tailoring of room temperature ferromagnetism and electrical properties in ZnO by Co (3d) and Gd (4f) element co-doping. J. Alloys Compd. 691, 739–749 (2017). https://doi.org/10.1016/j.jallcom.2016.08.287

    Article  Google Scholar 

  17. Ramu, S., Vijayalakshmi, R.P.: Effect of terbium doping on the structural and magnetic properties of ZnS nanoparticles. J. Supercond. Nov. Magn. 30, 1921–1925 (2017). https://doi.org/10.1007/s10948-016-3960-x

    Article  Google Scholar 

  18. Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D.: Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys. 105, 119 (2009). https://doi.org/10.1063/1.3143103

    Article  Google Scholar 

  19. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306 (2006). https://doi.org/10.1103/PhysRevB.74.161306

    Article  ADS  Google Scholar 

  20. Zuo, X., Yoon, S.D., Yang, A., Duan, W.H., Vittoria, C., Harris, V.G.: Ferromagnetism in pure wurtzite zinc oxide. J. Appl. Phys. 105, 8–11 (2009). https://doi.org/10.1063/1.3062822

    Article  Google Scholar 

  21. Sharma, D.K., Sharma, K.K., Kumar, V., Sharma, A.: Synthesis of Er doped ZnO cone-like nanostructures with enhanced structural, optical and magnetic properties. J. Mater. Sci. Mater. Electron. 1–10. https://doi.org/10.1007/s10854-017-8320-5 (2017)

    Google Scholar 

  22. Lokhande, B.J., Patil, P.S., Uplane, M.D.: Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Phys. B Condens. Matter 302–303, 59–63 (2001). https://doi.org/10.1016/S0921-4526(01)00405-7

    Article  ADS  Google Scholar 

  23. Che Ani, N., Sahdan, M.Z., Nafarizal, N., Mohd Tawil, S.N.: Investigation of the structural, optical and electrical properties of gadolinium-doped zinc oxide films prepared by sol-gel method. Adv. Mater. Res. 1133, 424–428 (2016). https://doi.org/10.4028/www.scientific.net/AMR.1133.424

    Article  Google Scholar 

  24. Muchuweni, E., Sathiaraj, T.S., Nyakotyo, H.: Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066– 10070 (2016). https://doi.org/10.1016/j.ceramint.2016.03.110

    Article  Google Scholar 

  25. Winer, I., Shter, G.E., Mann-Lahav, M., Grader, G.S.: Effect of solvents and stabilizers on sol–gel deposition of Ga-doped zinc oxide TCO films. J. Mater. Res 26, 1309–1315 (2011). https://doi.org/10.1557/jmr.2011.69

    Article  ADS  Google Scholar 

  26. Kumar, P., Kumar, Y., Malik, H.K., Annapoorni, S., Gautam, S., Chae, K.H., Asokan, K.: Possibility of room-temperature multiferroism in Mg-doped ZnO. Appl. Phys. A Mater. Sci. Process. 114, 453–457 (2014). https://doi.org/10.1007/s00339-013-7664-9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Vasishth, A., Kaur, K. et al. Role of Dysprosium Doping on Structural, Optical, Magnetic and Electrical Properties of ZnO Nanorods. J Supercond Nov Magn 32, 685–691 (2019). https://doi.org/10.1007/s10948-018-4757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4757-x

Keywords

Navigation