Skip to main content
Log in

Effect of Ce3+ Ion on Structural and Hyperfine Interaction Studies of Co0.5Ni0.5Fe2−xCexO4 Ferrites: Useful for Permanent Magnet Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanoparticles of Co0.5Ni0.5Fe2−xCexO4 (where x = 0.0, 0.01, 0.015 and 0.02) ferrites are prepared by the modified solution combustion method using a mixture of fuels and are characterized to understand their structural, microstructural and magnetic properties. The X-ray diffraction is used to confirm the formation of a single-phase cubic spinel structure. The average crystallite sizes are calculated using the Scherrer formula and are found to be less than 50 nm. The microstructural features are obtained by the scanning electron microscopy, and the compositional analysis is done by using the energy-dispersive spectroscopy. The transmission electron microscopy (TEM) investigations show that the synthesized ferrites are made up of very fine spherical nanoparticles. The influence of a rare-earth element (Ce3+) on the magnetic properties of the samples was studied using the Mössbauer spectroscopy. The Mössbauer spectroscopy reveals the formation of broadened Zeeman lines and quadrupole-split lines and the presence of the Fe3+ charge state at B sites in the samples. The quadrupole splitting shows that the orientation of the magnetic hyperfine field with respect to the principle axes of the electric field gradient was random. The magnetic hyperfine field values indicate that the A sites have more A-O-B superexchange interactions than the B sites. The coexistence of magnetic sextet and a doublet component on the room-temperature spectra suggests superparamagnetic properties of the nanoparticles. The low-temperature (15 K) Mössbauer spectroscopy explores the paramagnetic relaxation in the nanoparticles. The area under the sextet refers to Fe3+ concentrations in the tetrahedral and octahedral sites of the ferrite. This study confirms that the Ce3+ substitution of Fe3+ only for octahedron sites causes the decrease in Fe-O-Fe arrangement. The effect of Ce3+ doping on the magnetic properties of Co0.5Ni0.5Fe2O4 is examined from the vibrating sample magnetometry (VSM) spectra. Saturation magnetization values are decreased initially and then increased, as result of Ce3+ doping. This can be explained by Neel’s two-sub-lattice model. Further, the value of coercivity is found to be increasing with increasing Ce3+ concentration. The obtained results of M-H loop with improved coercivity (from 851 to 1039 Oe) by Ce3+ doping of Co0.5Ni0.5Fe2O4 demonstrate the usefulness for permanent magnet applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sanchez-Marcos, J., Mazario, E., Rodriguez-Velamazan, J.A., Salas, E., Herrasti, P., Menendez, N.: Cation distribution of cobalt ferrite electrosynthesized nanoparticles. A methodological comparison. J. Alloy. Compd. 739, 909–917 (2018)

    Article  Google Scholar 

  2. Zalnėravicius, R., Paskevicius, A., Mazeika, K., Jagminas, A.: Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms. Appl. Surf. Sci. 435, 141–148 (2018)

    Article  ADS  Google Scholar 

  3. Kumar, L., Kumar, P., Kuncser, V., Greculeasa, S., Sahoo, B., Kar, M.: Strain induced magnetism and superexchange interaction in Cr substituted nanocrystalline cobalt ferrite. Mater. Chem. Phys. 211, 54–64 (2018)

    Article  Google Scholar 

  4. Motavallian, P., Abasht, B., Abdollah-Pour, H.: Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)

    Article  ADS  Google Scholar 

  5. Barrera, G., Coisson, M., Celegato, F., Raghuvanshi, S., Mazaleyrat, F., Kane, S.N., Tiberto, P.: Cation distribution effect on static and dynamic magnetic properties of Co1−xZnxFe2O4 ferrite powders. J. Magn. Magn. Mater. 456, 372–380 (2018)

    Article  ADS  Google Scholar 

  6. Song, N., Gu, S., Wu, Q., Li, C., Zhou, J., Zhang, P., Wang, W., Yue, M.: Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. J. Magn. Magn. Mater. 456, 793–798 (2018)

    Article  ADS  Google Scholar 

  7. Lyubutin, I.S., Starchikov, S.S., Baskakov, A.O., Gervits, N.E., Lin, C.-R., Tseng, Y.-T., Lee, W.-J., Shih, K.-Y.: Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0.75Cr1.25O4 nanoparticles. J. Magn. Magn. Mater. 451, 336–343 (2017)

    Article  ADS  Google Scholar 

  8. Mondal, R, Dey, S, Sarkar, K, Dasgupta, P, Kumar, S: Influence of high energy ball milling on structural parameters, cation distribution and magnetic enhancement of nanosized Co0.3Zn0.7Fe2O4. Mater. Res. Bull. 102, 160–171 (2018)

    Article  Google Scholar 

  9. Sharmaa, R, Komal, Kumar, V, Bansal, S, Singhal, S: Boosting the catalytic performance of pristine CoFe2O4 with yttrium (Y3+) inclusion in the spinel structure. Mater. Res. Bull. 90, 94–103 (2017)

    Article  Google Scholar 

  10. Humbe, A.V., Kounsalye, J.S., Shisode, M.V., Jadhav, K.M.: Rietveld refinement, morphology and superparamagnetic of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)

    Article  Google Scholar 

  11. Gore, S.K., Mane, R.S., Naushad, Mu., Jadhav, S.S., Zate, M.K., Alothman, Z.A., Hui, B.K.N.: Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015)

    Article  Google Scholar 

  12. Gawas, S.G., Meena, S.S., Yusuf, S.M., Verenkar, V.M.S.: Anisotropy and domain state dependent enhancement of single domain ferrimagnetism in cobalt substituted Ni-Zn ferrites. New J. Chem. 40, 9275–9284 (2016)

    Article  Google Scholar 

  13. Nordhei, C., Lund Ramstad, A., Nicholson, D.G.: Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution. Phys. Chem. Chem. Phys. 10, 1053–1066 (2008)

    Article  Google Scholar 

  14. Kumar, G., Kotnala, R.K., Shah, J., Kumar, V., Kumar, A., Singh, P.D.M.: Cation distribution: a key to ascertain the magnetic interactions in a cobalt substituted Mg–Mn nanoferrite matrix. Phys. Chem. Chem. Phys. 19, 16669–16680 (2017)

    Article  Google Scholar 

  15. Fayek, M.K., Bahgat, A.A.: Fe57 Mossbauer study in cobalt substituted magnetite. Z. Phys. B-Condens. Matter 46, 199–205 (1982)

    Article  ADS  Google Scholar 

  16. Ndlovu, B., Msomi, J.Z., Moyo, T.: Mössbauer and electrical studies of NixCo1−xFe2O4 nanoparticles. J. Alloys Compd. 749, 672–680 (2018)

    Article  Google Scholar 

  17. Nikumbh, A.K., Nagawade, A.V., Tadke, V.B., Bakare, P.P.: Electrical, magnetic and Mossbauer properties of cadmium - cobalt ferrites prepared by the tartarate precursor method. J. Mater. Sci. 36, 653–662 (2001)

    Article  ADS  Google Scholar 

  18. Rao, G.S.N., Caltun, O.F., Rao, K.H., Parvatheeswara Rao, B., Ajay Gupta, S.N.R., Rao, A., Kumar, M.: Mössbauer and magnetic study of silicon substituted cobalt ferrite. Hyperfine Interact. 184, 51–55 (2008)

    Article  ADS  Google Scholar 

  19. Rusanov, V., Gushterov, V., Nikolov, S., Trautwein, A.X.: Detailed Mössbauer study of the cation distribution in CoFe2O4 ferrites. Hyperfine Interact. 191, 67–74 (2009)

    Article  ADS  Google Scholar 

  20. Chauhan, L., Singh, N., Dhar, A., Kumar, H., Kumar, S., Sreenivas, K.: Structural and electrical properties of Dy3+ substituted NiFe2O4 ceramics prepared from powders derived by combustion method. Ceram. Int. 43, 8378–8390 (2017)

    Article  Google Scholar 

  21. Tsvetkov, M., Milanova, M., Pereira, L.C.J., Waerenborgh, J.C., Cherkezova-Zheleva, Z., Zaharieva, J., Mitov, I.: Magnetic properties of binary and ternary mixed metal oxides NiFe2O4 and Zn0.5Ni0.5Fe2O4 doped with rare earths by sol–gel synthesis. Chem. Pap. 70, 1600–1610 (2016)

    Article  Google Scholar 

  22. Bhasker, U., Yelasani, V., Ramana, V., Musugu, R.: Structural, electrical and Magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self combustion method. J. Magn. Magn. Mater. 374, 376–380 (2015)

    Article  ADS  Google Scholar 

  23. Jagadeesha Angadi, V, Rudraswamy, B, Sadhana, K., Praveena, K: Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J. Magn. Magn. Mater. 409, 111–115 (2016)

    Article  ADS  Google Scholar 

  24. Jagadeesha Angadi, V., Rudraswamy, B., Sadhana, K., Ramana Murthy, S., Praveena, K.: Effect of Sm3+-Gd3+ on structural, electrical and magnetic properties of Mn-Zn ferrites synthesized via combustion route. J. Alloy. Compd. 656, 5–12 (2016)

    Article  Google Scholar 

  25. Ranjith Kumar, E., Jayaprakash, R., Kumar, S.: The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles. J. Magn. Magn. Mater. 351, 70–75 (2014)

    Article  ADS  Google Scholar 

  26. Srinivasamurthy, K.M., Jagadeesha, A.V., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Mohan Kumar, P., Workineh Azale, H., Rudraswamy, B.: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Accepted manuscript. Ceram. Int. https://doi.org/10.1016/j.ceramint.2018.02.129 (2018)

    Article  Google Scholar 

  27. Angadi, V.J., Anupama, A.V., Kumar, R., Matteppanavar, S., Rudraswamy, B., Sahoo, B.: Observation of enhanced magnetic pinning in Sm3+ substituted nanocrystalline Mn–Zn ferrites prepared by propellant chemistry route. J. Alloys Compd. 682, 263–274 (2016)

    Article  Google Scholar 

  28. Matsnev, M.E., Rusakov, V.S.: SpectrRelax: an application for Mössbauer spectra modeling and fitting. AIP Conf. Proc. 1489, 178–185 (2012)

    Article  ADS  Google Scholar 

  29. Küdning, W., Bömmel, H.: Some properties of supported small α-Fe2O3 particles determined with the Mossbauer effect. Phys. Rev. 142, 327–333 (1966)

    Article  ADS  Google Scholar 

  30. Bodker, F., Mørup, S.: Size dependence of the properties of hematite nanoparticles. Europhys. Lett. 52 (2), 217–223 (2000)

    Article  ADS  Google Scholar 

  31. Chuev, M.A.: On the shape of gamma-resonance spectra of ferrimagnetic nanoparticles under conditions of metamagnetism. JETP Lett. 98(8), 465–470 (2013)

    Article  ADS  Google Scholar 

  32. Menil, F.: Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (*Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids. 46(7), 763–789 (1985)

    Article  ADS  Google Scholar 

  33. Vandenberghe, R.E., Grave, E.D.: Mossbauer effect studies of oxidic spinels. In: Long, G.J., Grandjean, F. (eds.) Mössbauer spectroscopy applied to inorganic chemistry, vol. 3, pp 59–172. Springer Science & Business Media, New York (1989)

  34. Jagdeesha Angadi, V., Choudhury, L., Sadhana, K., Liu, H.-L., Sandhya, R., Matteppanavar, S., Rudraswamy, B., Pattar, V., Anavekar, R.V., Praveena, K.: Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn Ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)

    Article  ADS  Google Scholar 

  35. Jagadeesha Angadi, V., Anupama, A.V., Harish, K., Choudhary, R., Kumar, H.M., Somashekarappa, M., Mallappa, B., Rudraswamy, B.: Sahoo: Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. J. Solid State Chem. 246, 119–124 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Ms. A. M. Tejashwini of the Department of Humanity, Vijayanagar College, Hospet, for her valuable input to increase the quality of the manuscript.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.5346.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jagadeesha Angadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasamurthy, K.M., Angadi, V.J., Kubrin, S.P. et al. Effect of Ce3+ Ion on Structural and Hyperfine Interaction Studies of Co0.5Ni0.5Fe2−xCexO4 Ferrites: Useful for Permanent Magnet Applications. J Supercond Nov Magn 32, 693–704 (2019). https://doi.org/10.1007/s10948-018-4752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4752-2

Keywords

Navigation