Skip to main content
Log in

Time-Dependent Diffusion Coefficient of Fe in MgB2 Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The iron (Fe) diffusion in superconducting MgB2 bulk samples has been studied for sintering time durations of 15 min, 30 min, 1 h, 2 h, and 4 h at 900C. Fe coating bulk polycrstalline superconducting MgB2 samples for Fe coating were prepared by pelletizing and used in the diffusion experiments with initial sintering at 800C for 1 h. A thin layer of Fe was coated on MgB2 pellets by evaporation in vacuum. Effects of Fe diffusion on the structural, electrical, and superconducting properties of MgB2 have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), energy-dispersive X-ray spectroscopy (EDS), and resistivity measurements. Fe diffused samples have slightly increased critical transition temperatures and have larger lattice parameter c values, in comparison with bare samples. Fe diffusion coefficients were calculated from depth profiles of c parameter and room temperature resistivity values. Depth profiles were obtained by successive removal of thin layers from Fe diffused surfaces of the samples. Our results have shown that the Fe diffusion coefficient decreases with increasing sintering time and resistivity measurements can be utilized for determination of diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., et al.: Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Dzhafaro, T.D.: Phys. Status Solidi (a) 158(2), 335 (1996)

    Article  ADS  Google Scholar 

  3. Terzioglu, C.: Phys. B Condens. Matter 403.18, 3320–3325 (2008)

    Article  Google Scholar 

  4. Goretta, K., Chen, N.: Diffusion and heat treatment of high temperature superconductors Superconducting Materials: Advances in Technology and Applications, pp 218–228 (2000)

    Chapter  Google Scholar 

  5. Dzhafarov, T.D., Altunbas, M., Varilci, A., Cevik, U., Kopya, A.I.: Mater. Lett. 26(6), 305–311 (1996)

    Article  Google Scholar 

  6. Ozturk, O., Asikuzun, E., Kaya, S., Coskunyurek, M., Yildirim, G., Yilmazlar, M., Terzioglu, C.: J. Supercond. Nov. Magn. 25(7), 2481–2487 (2012)

    Article  Google Scholar 

  7. Ozturk, O.: J. Mater. Sci. Mater. Electron. 23(6), 1235–1242 (2012)

    Article  Google Scholar 

  8. Altin, S., Aksan, M.A., Yakinci, M.E.: J. Phys. Chem. Solids 72(9), 1070–1076 (2011)

    Article  ADS  Google Scholar 

  9. Dogruer, M., Zalaoglu, Y., Yildirim, G., Varilci, A., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 24(6), 2019–2026 (2013)

    Article  Google Scholar 

  10. Samuely, P., Szabo, P., Pribulova, Z., Angst, M., Bud’ko, S.L., Canfield, P.C., Kang, B.W.: Physica C: Superconductivity and Its Applications 460, 84–88 (2007)

    Article  ADS  Google Scholar 

  11. Fujii, H., Ishitoya, A., Itoh, S., Ozawa, K., Kitaguchi, H.: J. Alloys Compd. 664, 650–656 (2016)

    Article  Google Scholar 

  12. Akdogan, M., Yetis, H., Gajda, D., Karaboga, F., Ulgen, A.T., Demirtrk, E., Belenli, I.: J. Alloys Compd. 649, 1007–1010 (2015)

    Article  Google Scholar 

  13. Kim, J.H., Dou, S.X., Wang, J.L., Shi, D.Q., Xu, X., et al.: Supercond. Sci. Technol. 20.5, 448 (2007)

    Article  ADS  Google Scholar 

  14. Kovac, P., Husek, I., Melisek, T.: Supercond. Sci. Technol. 15.9, 1340 (2002)

    Article  ADS  Google Scholar 

  15. Holubek, T., Kovac, P., Husek, I.: Acta Physica Polonica-Series A General Physics 113.1, 367–370 (2008)

    Article  ADS  Google Scholar 

  16. Devadas, K.M., Rahul, S., Thomas, S., Varghese, N., et al.: J. Alloys Compd. 509.31, 8038–8041 (2011)

    Article  Google Scholar 

  17. Novosel, N., Pajic, D., Skoko, Z., Mustapic, M., Babic, E., Zadro, K., Horvat, J.: Phys. Procedia 36, 1498–1503 (2012)

    Article  ADS  Google Scholar 

  18. Singh, K.P., Awana, V.P., et al.: J. Supercond. Nov. Magn. 21(1), 39–44 (2008)

    Article  Google Scholar 

  19. Dogruer, M., Yildirim, G., Yucel, E., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 23(11), 1965–1970 (2012)

    Article  Google Scholar 

  20. Ulgen, A.T, Belenli, I: J. Supercond. Nov. Magn. 30, 1089 (2017). doi:10.1007/s10948-016-3780-z

    Article  Google Scholar 

  21. Scherrer, P.: Gttinger Nachrichten Gesell. 2, 98 (1918)

    Google Scholar 

  22. Patterson, A.: Phys. Rev. 56(10), 978–982 (1939)

    Article  ADS  Google Scholar 

  23. Warren, B.E.: J. App. Phys. 12, 375 (1941)

    Article  ADS  Google Scholar 

  24. Joubert, J., Shirk, T.: Mat. Res. Bull. 3, 671 (1968)

    Article  Google Scholar 

  25. Avaeva, I., Kravchenko, V.: Izvestija Akad. Nauk SSSR 8N7, 1330 (1972)

    Google Scholar 

  26. Zhou, S., Dou, S.: Solid State Sci. 12(1), 105–110 (2010)

    Article  ADS  Google Scholar 

  27. Kim, J.H, et al.: arXiv:cond-mat/0607540 (2006)

  28. Jiang, C.H., Dou, S.X., Cheng, Z.X., Wang, X.L.: Supercond. Sci. Technol. 21(6), 065017 (2008)

    Article  ADS  Google Scholar 

  29. Heitjans, P., Karger, J.: Diffusion in condensed matter, Springer Berlin Heidelberg, New York (2005)

  30. Grathwohl, P.: Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  31. Donovan, R.P., Evans, R.: S.S.Electronics 10, 155 (1967)

    Article  ADS  Google Scholar 

  32. Abdullaev, G.B., Dzhafarov, T.D.: Atomic Diffusion in Semiconductor Structures. Harwood, New York (1987)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Research Council of Turkey, (Project no: 113F080), AIBU Research Fund grant no: 2016.03.02.1067 and in part by Ministry of Development under Grant 2010K120520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Tolga Ulgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulgen, A.T., Belenli, I. Time-Dependent Diffusion Coefficient of Fe in MgB2 Superconductors. J Supercond Nov Magn 30, 3367–3375 (2017). https://doi.org/10.1007/s10948-017-4113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4113-6

Keywords

Navigation