Skip to main content
Log in

Investigation of Electronic and Magnetic Properties of Iron(II)-Bromide Compound by First Principle, Mean Field, Series Expansion Calculations and Monte Carlo Simulation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The self-consistent abinitio calculations, based on DFT (density functional theory) approach and using FLAPW (full-potential linear augmented plane wave) method, are performed to investigate both electronic and magnetic properties of the FeBr 2 compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between two adjacent Fe atoms. Magnetic moments considered to lie along (001) axes are computed. The antiferromagnetic and ferromagnetic energies of FeBr 2 are estimated. Obtained data from abinitio calculations are used as input for the high-temperature series expansion (HTSE) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Fe–Fe in FeBr 2 are established by using the mean field theory. The critical temperature T C(K) is obtained by HTSEs combined with the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is established. The critical temperature and magnetic hysteresis cycle are obtained by Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lanusse, M.C., Carrara, P., Fert, A.R., Mischler, G., Redoules, J.P.: J. Phys. 33, 429 (1972)

    Article  Google Scholar 

  2. Fert, A.R., Carrara, P., Lanusse, M.C., Mischler, G., Redoules, J.P.: J. Phys. Chem. Solids. 34, 223 (1973)

    Article  ADS  Google Scholar 

  3. Bertrand, Y., Fert, A.R., Gelard, J. J. Phys. 35, 385 (1974)

    Article  Google Scholar 

  4. Pelloth, J., Brand, R.A., Takele, S., de Azevedo, M.M.P., Kleemann, W., Binek, C., Kushauer, J., Bertrand, D.: Phys. Rev. B 52, 15372 (1995)

    Article  ADS  Google Scholar 

  5. Wilkinson, M.K., Cable, J.W., Wollan, E.O., Koehler, W.C.: Phys. Rev. 113, 497 (1959)

    Article  ADS  Google Scholar 

  6. Ropka, Z., Michalski, R., Radwanski, R.J.: Phys. Rev. B 63, 172404 (2001)

    Article  ADS  Google Scholar 

  7. Fert, A.R., Carrara, P., Lanusse, M.C., Mischler, G., Redouls, J.P.: J. Phys. Chem. Solids 34, 223 (1973)

    Article  ADS  Google Scholar 

  8. Stryjewski, E., Giordano, N.: Adv. Phys. 26, 487 (1977)

    Article  ADS  Google Scholar 

  9. Onyszkiewicz, Z.: Physica A 103, 274 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. Masrour, R., Hlil, E.K., Hamedoun, M., Benyoussef, A., Boutahar, A., Lassri, H.: J. Magn. Magn. Mater 393, 600–603 (2015)

    Article  ADS  Google Scholar 

  11. Masrour, R., Bahmad, L., Hlil, E.K., Hamedoun, M., Benyoussef, A.: J. Supercond. Nov. Magn. 27, 2299–2303 (2014)

    Article  Google Scholar 

  12. Masrour, R., Bahmad, L., Hlil, E.K., Hamedoun, M., Benyoussef, A.: J. Magn. Magn. Mater. 354, 372–375 (2014)

    Article  ADS  Google Scholar 

  13. Baker, G.A., Graves-Morris, P. (eds.): Padé Approximants. Addison-Wesley, London (1981)

  14. Blaha, P., Schwartz, K., Sorantin, P., Trikey, S.B.: Comput. Phys. Common. 59, 399 (1990)

    Article  ADS  Google Scholar 

  15. Haberecht, J., Borrmann, H., Kniep, R.: Z. Kristallogr. NCS, 216 (2001)

  16. Holland, W.E., Brown, H.A.: Phys-Stat. Sol (a) 10, 249 (1972)

    Article  ADS  Google Scholar 

  17. Moron, M.C.: J. Phys. Condens. Matter 8, 11141 (1996)

    Article  ADS  Google Scholar 

  18. Stanley, H.E., Kaplan, T.A.: Phys. Rev. Lett. 16, 981 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  19. Eriksson, O., Johansson, B., Brooks, M.S.S.: J. Phys. Condens. Matter 1, 4005 (1989)

    Article  ADS  Google Scholar 

  20. Ropka, Z., Michalski, R., Radwanski, R.J.: Phys. Rev. B 63, 172404 (2001)

    Article  ADS  Google Scholar 

  21. Sargolzaei, M., Rusz, J.: J. Phys.: Condens. Matter 20, 025217 (2008)

    ADS  Google Scholar 

  22. de Azevedo, M.M.P., Binek, C., Kushauer, J., Kleemann, W., Bertrand, D.: J. Magn. Magn. Mater 140–144, 1557–1558 (1995)

    Article  Google Scholar 

  23. Sardar, S., Chakraborty, K.G.: Physica A 238, 317 (1997)

    Article  ADS  Google Scholar 

  24. Van Dyke, J.P., Camp, W.J.: Phys. Rev. B 9, 3121 (1974)

    Article  ADS  Google Scholar 

  25. Griffiths, R.B.: Phys. Rev. 158, 557 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masrour, R., Jabar, A., Hlil, E.K. et al. Investigation of Electronic and Magnetic Properties of Iron(II)-Bromide Compound by First Principle, Mean Field, Series Expansion Calculations and Monte Carlo Simulation. J Supercond Nov Magn 29, 2059–2063 (2016). https://doi.org/10.1007/s10948-016-3491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3491-5

Keywords

Navigation