Skip to main content
Log in

Upper Critical Field as a Probe for Multiband Superconductivity in Bulk and Interfacial STO

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate the temperature dependence of the upper critical field H c2 as a tool to probe the possible presence of multiband superconductivity at the interface between LaAlO 3 and SrTiO 3 (LAO/STO). The behaviour of H c2 can clearly indicate two-band superconductivity through its nontrivial temperature dependence. For the disorder scattering dominated two-dimensional LAO/STO interface, we find a characteristic non- monotonic curvature of the H c2(T). We also analyse the H c2 for multiband bulk STO and find similar behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Suhl, H., Matthias, B., Walker, L.: Bardeen-cooper-schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3(12), 552–554 (1959)

    Article  ADS  MATH  Google Scholar 

  3. Moskalenko, V.A.: Fiz. Met. Metalloved. 3, 503 (1959)

    Google Scholar 

  4. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–4 (2001)

    Article  ADS  Google Scholar 

  5. Kamihara, Y., Hiramatsu, H., Masahiro, H., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012–3 (2006)

    Article  Google Scholar 

  6. Kamihara, Y., Watanabe, T., Hirano, M., Hoono, H.: Iron-based layered superconductor La[O(1 −x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. J. Am. Chem. Soc. 130(11), 3296–7 (2008)

    Article  Google Scholar 

  7. Stewart, G.R.: Superconductivity in iron compounds. Rev. Mod. Phys. 83(4), 1589–1652 (2011)

    Article  ADS  Google Scholar 

  8. Gurevich, A.: Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67(18), 184515 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  9. Xi, X.X: Two-band superconductor magnesium diboride. Rep. Prog. Phys. 71(11), 116501 (2008)

    Article  ADS  Google Scholar 

  10. Chuang, T.-M., Allan, M.P., Lee, J., Xie, Y., Ni, N., Bud’ko, S.L., Boebinger, G.S., Canfield, P.C., Davis, J.C.: Nematic electronic structure in the “parent” state of the iron-based superconductor Ca(Fe(1-x)Co(x))2As2. Science (New York, N.Y.) 327(5962), 181–4 (2010)

    Article  ADS  Google Scholar 

  11. Sologubenko, A.V., Jun, J., Kazakov, S.M., Karpinski, J., Ott, H.R.: Thermal conductivity of single-crystalline MgB_{2}. Phys. Rev. B 66(1), 014504 (2002)

    Article  ADS  Google Scholar 

  12. Seyfarth, G., Brison, J.P., Méasson, M.-A., Flouquet, J., Izawa, K., Matsuda, Y., Sugawara, H., Sato, H.: Multiband superconductivity in the heavy fermion compound PrOs4Sb12. Phys. Rev. Lett. 95(10), 107004 (2005)

    Article  ADS  Google Scholar 

  13. Zehetmayer, M.: A review of two-band superconductivity: Materials and effects on the thermodynamic and reversible mixed-state properties. Supercond. Sci. Technol. 26(4), 043001 (2013)

    Article  ADS  Google Scholar 

  14. Kim,M.-S., Skinta, J., Lemberger, T., Kang,W., Kim, H.-J., Choi, E.-M., Lee, S.-I.: Reflection of a two-gap nature in penetration-depth measurements of MgB2 film. Phys. Rev. B 66(6), 064511 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Carrington, A., Manzano, F.: Magnetic penetration depth of MgB2. Phys. C. Supercond. 385(1–2), 205–214 (2003)

    Article  ADS  Google Scholar 

  16. Binnig, G., Baratoff, A., Hoenig, H.E., Bednorz, J.G.: Two-band superconductivity in Nb-Doped SrTiO_{3}. Phys. Rev. Lett. 45(16), 1352–1355 (1980)

    Article  ADS  Google Scholar 

  17. Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A, Triscone, J.-M., Mannhart, J.: Superconducting interfaces between insulating oxides. Science (New York, N.Y.) 317(5842), 1196–9 (2007)

    Article  ADS  Google Scholar 

  18. Richter, C., Boschker, H., Dietsche, W., Fillis-Tsirakis, E., Jany, R., Loder, F., Kourkoutis, L.F., Muller, D.A., Kirtley, J.R., Schneider, C.W., Mannhart, J.: Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502(7472), 528–531 (2013)

  19. Hunte, F., Jaroszynski, J., Gurevich, A., Larbalestier, D.C., Jin, R., Sefat, A.S., McGuire, M.A., Sales, B.C., Christen, D.K., Mandrus, D.: Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 453(7197), 903–5 (2008)

    Article  ADS  Google Scholar 

  20. C. S. Koonce, Cohen, M.L., Schooley, J.F., Hosler,W.R., Pfeiffer, E.R.: Superconducting transition temperatures of semiconducting SrTiO_{3}. Phys. Rev. 163(2), 380–390 (1967)

  21. Lin, X., Zhu, Z., Fauqué, B., Behnia, K.: Fermi surface of the most dilute superconductor. Phys. Rev. X 3(2), 021002 (2013)

    Google Scholar 

  22. Lin, X., Bridoux, G., Gourgout, A., Seyfarth, G., Kraemer, S., Nardone, M., Fauque, B., Behnia, K.: A critical doping level for superconductivity in SrTiO_{3-\delta}. Phys. Rev. Lett. 112, 207002 (2014)

    Article  ADS  Google Scholar 

  23. Koshelev, A.E., Golubov, A.A.: Mixed state of a dirty two-band superconductor: application to MgB2. Phys. Rev. Lett. 90(17), 177002 (2003)

  24. Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423–6 (2004)

  25. Nakamura, Y., Yanase, Y.: Multi-orbital superconductivity in SrTiO$_{3}$/LaAlO$_{3}$ interface and SrTiO$_{3}$ surface. J. Phys. Soc. Jpn. 82(8), 083705 (2013)

    Article  ADS  Google Scholar 

  26. Fernandes, R.M., Haraldsen, J.T., Wölfle, P., Balatsky, A.V.: Two-band superconductivity in doped SrTiO_{3} films and interfaces. Phys. Rev. B 87(1), 014510 (2013)

    Article  ADS  Google Scholar 

  27. Perna, P., Maccariello, D., Radovic, M., Scotti di Uccio, U., Pallecchi, I., Codda, M., Marre, D., Cantoni, C., Gazquez, J., Varela, M., Pennycook, S.J., Granozio, F.M.: Conducting interfaces between band insulating oxides: the LaGaO[sub 3]/SrTiO[sub 3] heterostructure. Appl. Phys. Lett. 97(15), 152111 (2010)

    Article  ADS  Google Scholar 

  28. di Uccio, U.S., Aruta, C., Cantoni, C., Di Gennaro, E., Gadaleta, A., Lupini, A.R., Maccariello, D., Marré, D., Pallecchi, I., Paparo, D., Perna, P., Riaz, M., Granozio, F.M.: Reversible and persistent photoconductivity at the NdGaO3/SrTiO3 conducting interface (2012)

  29. Nakagawa, N.aoyuki., Hwang, H.arold.Y., Muller, D.avid.A.: Why some interfaces cannot be sharp. Nat. Mater. 5(3), 204–209 (2006)

    Article  ADS  Google Scholar 

  30. Gurevich, A.: Upper critical field and the Fulde-Ferrel-Larkin-Ovchinnikov transition in multiband superconductors. Phys. Rev. B 82(18), 184504 (2010)

    Article  ADS  Google Scholar 

  31. Cardona, M.: Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140(2A), A651–A655 (1965)

  32. van der Marel, D., van Mechelen, J.L.M., Mazin, I.I.: Common Fermi-liquid origin of T{2} resistivity and superconductivity in n-type SrTiO_{3}. Phys. Rev. B 84(20), 205111 (2011)

  33. Klaus, D.: Usadel. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25(8), 507–509 (1970)

    Article  Google Scholar 

  34. Yerin, Y., Drechsler, S.-L., Fuchs, G.: Ginzburg-landau analysis of the critical temperature and the upper critical field for three-band superconductors. J. Low Temp. Phys. 173(5–6), 247–263 (2013)

    Article  ADS  Google Scholar 

  35. Bussmann-Holder, A., Bishop, A.R., Simon, A.: SrTiO 3: from quantum paraelectric to superconducting. Ferroelectrics 400(1), 19–26 (2010)

  36. Kogan, V.G., Prozorov, R.: Orbital upper critical field and its anisotropy of clean one- and two-band superconductors. Reports on progress in physics. Physical Society (Great Britain) 75(11), 114502 (2012)

    Article  Google Scholar 

  37. Ben Shalom, M., Tai, C.W., Lereah, Y., Sachs, M., Levy, E., Rakhmilevitch, D., Palevski, A., Dagan, Y.: Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80(14), 140403 (2009)

  38. Caviglia, A.D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C., Triscone. J.-M.: Tunable rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104(12), 126803 (2010)

    Article  ADS  Google Scholar 

  39. Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A., Dagan. Y.: Tuning spin-orbit coupling and superconductivity at the SrTiO_{3}/LaAlO_{3} interface: a magnetotransport study. Phys. Rev. Lett. 104(12), 126802 (2010)

  40. Bergeret, F., Tokatly, I.: Singlet-triplet conversion and the long range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields. Phys. Rev. Lett. 110(11), 117003 (2013)

    Article  ADS  MATH  Google Scholar 

  41. Basletic, M., Maurice, J.-L, Carrétéro, C., Herranz, G., Copie, O., Bibes, M., Jacquet, E., Bouzehouane, K., Fusil, S., Barthélémy, A.: Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater. 7(8), 621–5 (2008)

    Article  ADS  Google Scholar 

  42. Reyren, N., Gariglio, S., Caviglia, A.D., Jaccard, D., Schneider, T., Triscone. J.-M.: Anisotropy of the superconducting transport properties of the LaAlO[sub 3]/SrTiO[sub 3] interface. Appl. Phys. Lett. 94(11), 112506 (2009)

  43. Ueno, K., Nojima, T., Yonezawa, S., Kawasaki, M., Iwasa, Y., Maeno, Y.: Effective thickness of two-dimensional superconductivity in a tunable triangular quantum well of SrTiO3. Phys. Rev. B 89(2), 020508 (2014)

    Article  ADS  Google Scholar 

  44. Tinkham, M.: Introduction to superconductivity, Dover (2004)

  45. Caviglia, A.D., Gariglio, S., Reyren, N., Jaccard, D., Schneider, T., Gabay, M., Thiel, S., Hammerl, G., Mannhart, J.ochen., Triscone, J.-M.: Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456(7222), 624–7 (2008)

    Article  ADS  Google Scholar 

  46. Herranz, G., Bergeal, N., Lesueur, J., Gazquez, J., Scigaj, M., Dix, N., Sanchez, F., Fontcuberta, J.: Orientational tuning of the 2D-superconductivity in LaAlO3/SrTiO3 interfaces, p. 5 (2013)

  47. Bert, J.A., Nowack, K.C., Kalisky, B., Noad, H., Kirtley, J.R., Bell, C., Sato, H.K., Hosoda, M., Hikita, Y., Hwang, H.Y., Moler, K.A.: Gate-tuned superfluid density at the superconducting LaAlO_{3}/SrTiO_{3} interface. Phys. Rev. B 86(6), 060503 (2012)

    Article  ADS  Google Scholar 

  48. Prozorov, R., Kogan, V.G.: London penetration depth in iron-based superconductors. Rep. Prog. Phys. 74(12), 124505 (2011)

    Article  ADS  Google Scholar 

  49. Simons, B.D., Altland, A. Condensed matter field theory, 2nd edn. Cambridge University Press (2010)

Download references

Acknowledgments

We are grateful to K. Behnia, R. Fernandes, J. Haraldsen, J.X. Zhu and S. Lederer for useful discussions and H. Haraldsen, K. Moler and K. Behnia for comments on the draft. We would also like to thank K. Behnia for showing us some of the data in Ref. [22] prior to publication. Work was supported by Nordita, VR 621-2012-2983 and ERC 321031-DM. Work at Los Alamos was supported by the Office of Basic Energy Sciences and by LDRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Edge.

Appendix: A. Induced Triplet Superconductivity

Appendix: A. Induced Triplet Superconductivity

1.1 A. 1 Induced Triplet Components Δab and Δc

We now look at the triplet component of superconductivity that is induced by spin-orbit coupling and show that it is not relevant for our calculations. We treat spin-orbit coupling in a perturbative way and assume that it is smaller than the Fermi energy. The self consistent expression for the gap Δ within a single band in the absence of spin-orbit coupling is given by [49]

$$\begin{array}{@{}rcl@{}} {\Delta}= \frac{T}{L^{d}}{\sum}_{p,n}V(p) \frac{\Delta}{{\omega_{n}^{2}} + {\xi_{p}^{2}} + {\Delta}^{2}} \end{array} $$
(30)

with \(\xi _{p}=\frac {p^{2}}{2m}-\mu \) and V is the interaction potential . We now take spin-orbit coupling into account. We thus write Δ as a matrix according to (23) and ξ turns into

$$\begin{array}{@{}rcl@{}} \xi\to \xi + \alpha (\boldsymbol{k} \times \boldsymbol{\sigma})=\xi + \alpha(k_{x} \sigma_{y} - k_{y} \sigma_{x}) \end{array} $$
(31)

If we assume the existence of a singlet gap Δ s , we can obtain to lowest order in α the perturbed expression for \(\tilde {\Delta } \)

$$\begin{array}{@{}rcl@{}} \tilde{\Delta} &=& \frac T{L^{d}} \sum\limits_{p,n} V(p) \\ &&\!\!\!\!\!\!\!\!\!\!\frac{i\sigma_{y} {\Delta}_{s} ({\omega_{n}^{2}} \,+\, {\xi_{p}^{2}} \,+\, {\Delta}^{2}) \,-\, 2i\alpha k_{x} \xi_{p} {\Delta}_{s} \sigma_{0} \,+\, 2\alpha k_{y} \xi_{p} {\Delta}_{s} \sigma_{z} }{ ({\omega_{n}^{2}} + {\xi_{p}^{2}} + {\Delta}^{2})^{2}} \end{array} $$
(32)

We may now decompose V(p) into a singlet (momentum independent) potential V s and a spin-dependent triplet component V t (p). We are not aware of any experimental evidence which shows that V T is large. Although spin-orbit coupling may induce a triplet pairing amplitude, a genuine triplet pairing gap in addition requires a triplet pairing potential. As, in general, triplet superconductivity is a rare phenomenon however, we make the reasonable assumption that V t V s . The induced triplet components are then given by

$$\begin{array}{@{}rcl@{}} {\Delta}^{a}&=& \frac T{L^{d}} \sum\limits_{p,n} (V_{s}+V_{t}(p)) \frac{2\alpha k_{y} \xi_{p} {\Delta}_{s}}{({\omega_{n}^{2}} + {\xi_{p}^{2}} + {\Delta}^{2})^{2}} \end{array} $$
(33)
$$\begin{array}{@{}rcl@{}} {\Delta}^{b}&=& \frac T{L^{d}} \sum\limits_{p,n} (V_{s}+V_{t}(p)) \frac{2\alpha k_{x} \xi_{p} {\Delta}_{s}}{({\omega_{n}^{2}} + {\xi_{p}^{2}} + {\Delta}^{2})^{2}} \end{array} $$
(34)
$${\Delta}^{c}=0 .$$
(35)

Since Δa and Δb contain a sum over all k y or k x values, only the term proportional to V t (p) survives. Since V t V s , we conclude that

$${\Delta}^{a}\approx{\Delta}^{b} \ll {\Delta}_{s} . $$
(36)

At this order, we thus conclude that the p-wave components are negligible and we set Δa = Δb = Δc = 0.

1.2 A.2 Induced Triplet Components f a,f b and f c

Here, we estimate the relative strength of the singlet and triplet components of the function \(\tilde f\). We show that for the regime we are interested in the triplet components of \(\tilde f\) are an order of magnitude smaller than that of the singlet components, which we will subsequently neglect.

We start from (24), which gives rise to four equations for the four Pauli matrices σ i , i∈{0,x,y,z}.

$$\begin{array}{@{}rcl@{}} \sigma_{y}:2\omega f_{s} - D \left\{ {\nabla_{x}^{2}} f_{s} - \frac{4\pi^{2} H^{2} x^{2}}{{\phi_{0}^{2}}} f_{s} - \frac{8\pi\nu H x}{\phi_{0}} f^{a}\right. \\\left.- 4\nu^{2} f_{s} + {\nabla_{z}^{2}} f_{s} \right\} = 2{\Delta}_{s} \end{array} $$
(37a)
$$\begin{array}{@{}rcl@{}} \sigma_{z}:2\omega f^{a} \,-\, D\!\! \left\{\! {\nabla_{x}^{2}} f^{a} \,-\, \frac{4\pi^{2} H^{2} x^{2}}{{\phi_{0}^{2}}} f^{a} - 8\nu^{2} f^{a} \,-\, 4\nu\nabla_{x} f^{c} \right. \\\left.- \frac{8\pi\nu H x}{\phi_{0}} f_{s} + {\nabla_{z}^{2}} f^{a} \right\} \,=\, 2{\Delta}^{a}\;\qquad \end{array} $$
(37b)
$$ \sigma_{0}: 2\omega f^{b} \,-\, D\! \!\left\{ {\nabla_{x}^{2}} f^{b} \,-\, \frac{4\pi^{2} H^{2} x^{2}}{{\phi_{0}^{2}}} f^{b} \,+\, {\nabla_{z}^{2}} f^{b} \right\} \,=\, 2{\Delta}^{b} $$
(37c)
$$\begin{array}{@{}rcl@{}} \sigma_{x}: 2\omega f^{c} - D \left\{ {\nabla_{x}^{2}} f^{c} - \frac{4\pi^{2} H^{2} x^{2}}{{\phi_{0}^{2}}} f^{c} - 4\nu^{2} f^{c} \right. \\\left.+ 4\nu\nabla_{x} f^{a} + {\nabla_{z}^{2}} f^{c} \right\} = 2{\Delta}^{c} \end{array} $$
(37d)

We see that (37c) does not couple to the other three equations. From Appendix A.1, we may now conclude that Δa,b,c = 0. The remaining set of coupled three differential equations remains very difficult to solve. In order to estimate the relative importance of the singlet and triplet components of \(\tilde f\), we approximate this system of differential equations by a system of algebraic equations, replacing ∇ x with \(l_{B}^{-1}\) and x with l B . In analogy with what we did in Section 6, we also replace \({\nabla _{z}^{2}}\) with \(-\frac {\pi ^{2}}{4d^{2}} \). This yields

$$\begin{array}{@{}rcl@{}} \sigma_{y}:2\omega f_{s} - D \left\{ \frac{ f_{s}}{{l_{B}^{2}}} - \frac{4\pi^{2} H^{2} {l_{B}^{2}}}{{\phi_{0}^{2}}} f_{s} - \frac{8\pi\nu H l_{B}}{\phi_{0}} f^{a} \right. \\\left.- 4\nu^{2} f_{s} - \frac{\pi^{2}}{4d^{2}} f_{s} \right\} = 2{\Delta}_{s} \end{array} $$
(38a)
$$\begin{array}{@{}rcl@{}} \sigma_{z}:2\omega f^{a} - D \left\{ \frac{ f^{a}}{{l_{B}^{2}}} - \frac{4\pi^{2} H^{2} {l_{B}^{2}}}{{\phi_{0}^{2}}} f^{a} - 8\nu^{2} f^{a} - 4\nu \frac{ f^{c}}{l_{B}} \right. \\\left.- \frac{8\pi\nu H l_{B}}{\phi_{0}} f_{s} - \frac{\pi^{2}}{4d^{2}} f^{a} \right\} = 0\qquad \end{array} $$
(38b)
$$\begin{array}{@{}rcl@{}} \sigma_{x}: 2\omega f^{c} - D \left\{ \frac{ f^{c}} { {l_{B}^{2}}} - \frac{4\pi^{2} H^{2} {l_{B}^{2}}}{{\phi_{0}^{2}}} f^{c} - 4\nu^{2} f^{c} + 4\nu \frac{ f^{a}}{ l_{B} } \right. \\\left.- \frac{\pi^{2}}{4d^{2}} f^{c} \right\} = 0\qquad \end{array} $$
(38c)

We choose the magnetic length as

$$ {l_{B}^{2}}=\frac{\phi_{0}}{4\pi H}\left(1+\sqrt 5\right) $$
(39)

This choice ensures that the terms \(\left ({\nabla _{x}^{2}} - \frac {4\pi ^{2} H^{2} x^{2}}{{\phi _{0}^{2}}} \right )\) \( \exp (-\pi H x^{2}/\phi _{0})= \left (l_{B}^{-2} - \frac {4\pi ^{2} H^{2} {l_{B}^{2}}}{{\phi _{0}^{2}}}\right ) \exp (-\pi H x^{2}/\phi _{0})\) where \(\exp (-\pi H x^{2}/\phi _{0})\) is the envelope function from (5).

We solve this system of three equations for f s , f a and f c. In order to estimate the relative magnitude of these three terms, we insert typical values for H,d,D and Δ s . For ν and d, we choose the same values as in Section 6, for Δ s , we choose the value from the largest singlet gap [16], and for H, we choose the typical value for the upper critical field [42, 46]

$$ \alpha=3\cdot10^{-12}\,eVm \qquad \nu=3.9\cdot10^{7} \, \frac{1}{m} $$
(40a)
$$ d=1.2\cdot10^{-8}\, m \qquad D=1.25\cdot10^{-4} \, \frac{m^{2}}{s} $$
(40b)
$$ {\Delta}_{s}= 60\, \mu eV = 9.1\cdot10^{10}\,\frac{1}{s}\qquad {\Delta}^{a}={\Delta}^{c}=0 $$
(40c)
$$ H=0.1\,T \qquad \frac{\pi H}{\phi_{0}}= 1.57\cdot10^{14}\, \frac{1}{s}. $$
(40d)

The resulting approximate values for f s , f a and f c as a function of ω are plotted in Fig. 11. We see that the triplet components f a and f c are at least an order of magnitude smaller than f s . We thus only make a small mistake by neglecting f a and f c, when solving for the dominant component f s in the main text. This corresponds to solving only the single differential (37a), as opposed to the full set of three coupled differential (37a37d). The result of solving only (37a) is also shown in Fig. 11 as \({f_{s}^{0}}\) and we find that \(f_{s}\approx {f_{s}^{0}}\).

Fig. 11
figure 11

Magnitude of the singlet and triplet f functions for typical parameters under consideration. The triplet components are one order of magnitude lower than the singlet component, thereby justifying our neglect of them in the main text. The plot also contains \({f_{s}^{0}}\), which results from only solving (37a), thus neglecting the triplet components. We see that the difference between f s and \({f_{s}^{0}}\) is minimal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edge, J.M., Balatsky, A.V. Upper Critical Field as a Probe for Multiband Superconductivity in Bulk and Interfacial STO. J Supercond Nov Magn 28, 2373–2384 (2015). https://doi.org/10.1007/s10948-015-3052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3052-3

Keywords

Navigation