Skip to main content
Log in

Estimation of Superconducting Transition Temperature T C for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Distortions in lattice parameters of MgB2 superconductor occur when dopants are introduced into the crystal lattice structure which finally affects its superconducting transition temperature (T C). We hereby developed a superconducting transition temperature estimator (STTE) that is capable of estimating the T C of superconductors of the doped MgB2 systems using crystal lattice parameters obtained when dopants are introduced into the crystal structure as descriptors. The model (STTE) was developed with the aid of support vector regression via test-set cross-validation technique using twenty datasets. The developed model was used to estimate the T C of forty different superconductors of doped MgB2 system, and the obtained values agree well with the experimental data. The predictive ability of the developed model to directly link the lattice parameters of doped MgB2 superconductors to T C is advantageous for quick estimation of T C of ideal superconductors of the doped MgB2 system without any sophisticated equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buzea, C., Yamashita, T.: Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 14(11), R115–R146 (2001)

    Article  ADS  Google Scholar 

  2. Cui, Y., Chen, Y., Yang, Y., Zhang, Y., Cheng, C., Zhao, Y.: Hg substitution effect on superconductivity and crystal structure of MgB2. J. Electron. Sci. Technol. CHINA 6(2), 152–156 (2008)

    Google Scholar 

  3. Ojha, N., Malik, V.K., Bernhard, C., Varma, G.D.: Enhanced superconducting properties of Eu2O3-doped MgB2. Phys. C Supercond. 469(14), 846–851 (2009)

    Article  ADS  Google Scholar 

  4. Zhou, S., Pan, a. V., Dou, S.X.: An attempt to improve the superconducting properties of MgB2 by doping with Zn-containing organic compound. J. Alloys Compd. 487(1–2), 42–46 (2009)

    Article  Google Scholar 

  5. Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S.: Carbon-substituted MgB2 single crystals. Phys. C Supercond. 397(1–2), 7–13 (2003)

    ADS  Google Scholar 

  6. Zhang, Z., Suo, H., Ma, L., Zhang, T., Liu, M., Zhou, M.: Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes. Phys. C Supercond. 471(21–22), 908–911 (2011)

    Article  ADS  Google Scholar 

  7. Rotter, M., Tegel, M., Johrendt, D.: Superconductivity at 38 K in the iron arsenide (Ba1−x K x )Fe2As2. Phys. Rev. Lett. 101(10), 107006 (2008)

    Article  ADS  Google Scholar 

  8. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1−x F x ]FeAs(x = 0.05-0.12) with T c= 26 K. J. Am. Chem. Soc. (2008)

  9. Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Estimation OF the atomic radii of periodic elements using support vector machine. Int. J. Adv. Inf. Sci. Technol. 28(28), 39–49 (2014)

    Google Scholar 

  10. Majid, A., Khan, A., Javed, G., Mirza, A.M.: Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression. Comput. Mater. Sci. 50(2), 363–372 (2010)

    Article  Google Scholar 

  11. Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Prediction of superconducting transition temperatures for Fe-based superconductors using support vector machine. Adv. Phys. Theor. Appl. 35(Olatunji 2010), 12–26 (2014)

    Google Scholar 

  12. Owolabi, T.O., Akande, K.O., Olatunji, S.O.: Support vector machines approach for estimating work function of semiconductors: addressing the limitation of metallic plasma model. Appl. Phys. Res. 6(5), 122–132 (2014)

    Article  Google Scholar 

  13. Shini, M.A., Laufer, S., Rubinsky, B.: SVM for prostate cancer using electrical impedance measurements. Inst. Phys. 32(9), 1373–87 (2011)

    Google Scholar 

  14. Cai, C.Z., Wang, G.L., Wen, Y.F., Pei, J.F., Zhu, X.J., Zhuang, W.P.: Superconducting transition temperature T c estimation for superconductors of the doped MgB2 system using topological index via support vector regression. J. Supercond. Nov. Magn. 23(5), 745–748 (2010)

    Article  Google Scholar 

  15. Cui, Y., Dy, J.G., Alexander, B., Jiang, S.B.: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines. Phys. Med. Biol. 53(16), N315–27 (2008)

    Article  ADS  Google Scholar 

  16. Olatunji, S.O., Selamat, A., Abdulraheem, A.: A hybrid model through the fusion of type-2 fuzzy logic systems and extreme learning machines for modelling permeability prediction. Inf. Fusion 16, 29–45 (2014)

    Article  Google Scholar 

  17. Akande, K.O., Owolabi, T.O., Twaha, S., Olatunji, S.O.: “Performance comparison of SVM and ANN in predicting compressive strength of concrete,” IOSR. J. Comput. Eng. 16(5), 88–94 (2014)

    Google Scholar 

  18. Eisterer, M.: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20(12), R47—R73 (2007)

    Google Scholar 

  19. Cortes, C., Vapnik, V. Support-vector networks 297, 273–297 (1995)

    Google Scholar 

  20. Vapnik, V.: The nature of statistical learning theory. Springer (1995)

  21. Gupta, S.M.: Support vector machines based modelling of concrete strength. World Acad. Sci. Eng. Technol. 36, 305–311 (2007)

    Google Scholar 

  22. Kumar, N., Das, S., Bernhard, C., Varma, G.D.: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26(9), 1–8 (2013)

    Google Scholar 

  23. Ağıl, H., Yetis, H., Akdogan, M., Altug, C., Akturk, S., Gencer, A.: Fabrication and characterization of C15H12O2 doped MgB2 bulk superconductors. Cryogenics (Guildf). 63, 138–142 (2014)

    Article  ADS  Google Scholar 

  24. Hušeková, K., Hušek, I., Kováč, P., Kulich, M., Dobročka, E., Štrbík, V.: Properties of MgB2 superconductor chemically treated by acetic acid. Phys. C Supercond. 1470(5–6), 331–335 (2010)

    Article  ADS  Google Scholar 

  25. Das, S., Bernhard, C., Varma, G.D.: Enhanced superconducting properties of rare-earth oxides and graphene oxide added MgB2. Phys. C Supercond. 505, 32–38 (2014)

    Article  ADS  Google Scholar 

  26. Sinha, B.B., Kadam, M.B., Mudgel, M., Awana, V.P.S., Kishan, H., Pawar, S.H.: Synthesis and characterization of excess magnesium MgB2 superconductor under inert carbon environment. Phys. C Supercond. 470(1), 25–30 (2010)

    Article  ADS  Google Scholar 

  27. Tripathi, D., Moharana, S.S., Dey, T.K.: The role of starch doping on the superconducting properties of MgB2. Cryogenics (Guildf). 63, 85–93 (2014)

    Article  ADS  Google Scholar 

  28. Tripathi, D., Dey, T.K.: Effect of (Bi, Pb)-2223 addition on thermal transport of superconducting MgB2 pellets. J. Alloys Compd. 618, 56–63 (2015)

    Article  Google Scholar 

  29. Lim, J.H., Jang, S.H., Hwang, S.M., Choi, J.H., Joo, J., Kang, W.N., Kim, C.: Effects of the sintering temperature and doping of C60 and SiC on the critical properties of MgB2. Phys. C Supercond. 468(15–20), 1829–1832 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for the constructive suggestions that have improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoreed O. Owolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, T.O., Akande, K.O. & Olatunji, S.O. Estimation of Superconducting Transition Temperature T C for Superconductors of the Doped MgB2 System from the Crystal Lattice Parameters Using Support Vector Regression. J Supercond Nov Magn 28, 75–81 (2015). https://doi.org/10.1007/s10948-014-2891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2891-7

Keywords

Navigation