Skip to main content
Log in

Disorder Induced BCS–BEC Crossover in an Ultracold Fermi Gas

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We develop the formalism for BCS–BEC crossover in the presence of weak random impurity and calculate the effect of the random potentials on the basic mean-field quantities. The disorder has been included through the Nozières and Schmitt–Rink theory of superconducting fluctuations, and we obtain the disorder induced superfluid order parameter and chemical potential through a self-consistent calculation. We also calculate the condensate fraction which reveals a distinct nonmonotonic behavior. The downturn in the latter result occurs at the crossover regime with gradual depletion on the BEC side. The non-monotonic feature in the condensate fraction data has been measured in clean systems. Motivated by the above result, we discuss the stability of a disordered fermionic superfluid in the crossover regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  2. Giorgini, S., Pitaevskii, L.P., Stringari, S.: Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J., Zwerger, W.: Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  4. Anderson, P.W.: J. Phys. Chem. Solids 11, 26 (1959)

    Article  ADS  Google Scholar 

  5. Billy, J., et al.: Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  6. Roati, G., et al.: Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  7. Kondov, S.S., McGhee, W.R., Zirbel, J.J., DeMarco, B.: Science 334, 66 (2011)

    Article  ADS  Google Scholar 

  8. Jendrzejewski, F., et al.: Nat. Phys. 8, 398 (2012)

    Article  Google Scholar 

  9. Palencia, L.S., Lewenstein, M.: Nat. Phys. 6, 87 (2010)

    Article  Google Scholar 

  10. Belitz, D., Kirkpatrick, T.R.: Rev. Mod. Phys. 66, 261 (1994)

    Article  ADS  Google Scholar 

  11. Ghoshal, A., Randeria, M., Trivedi, N.: Phys. Rev. B 65, 014501 (2001)

    Article  ADS  Google Scholar 

  12. Bouadim, K., Loh, Y.L., Randeria, M., Trivedi, N.: Nat. Phys. 7, 884 (2011)

    Article  Google Scholar 

  13. Huang, K., Meng, H.F.: Phys. Rev. Lett. 69, 644 (1992)

    Article  ADS  Google Scholar 

  14. Giorgini, S., Pitaevskii, L., Stringari, S.: Phys. Rev. B 49, 12938 (1994)

    Article  ADS  Google Scholar 

  15. Orso, G.: Phys. Rev. Lett. 99, 250402 (2007)

    Article  ADS  Google Scholar 

  16. Han, L., Sá de Melo, C.A.R.: New J. Phys. 13, 055012 (2011)

    Article  ADS  Google Scholar 

  17. Dey, P., Basu, S.: J. Phys. Condens. Matter 20, 485205 (2008)

    Article  Google Scholar 

  18. Khan, A., Basu, S., Kim, S.W.: J. Phys. B, At. Mol. Opt. Phys. 45, 135302 (2012)

    Article  ADS  Google Scholar 

  19. Nozières, P., Schmitt-Rink, S.: J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  20. Zwierlein, M.W., et al.: Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  21. Khan, A.: Int. J. Mod. Phys., Conf. Ser. 11, 120 (2012)

    Article  Google Scholar 

  22. Griffin, A., Snoke, D.W., Stringari, S. (eds.): Bose–Einstein Condensation. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  23. Taylor, E., Griffin, A., Fukushima, N., Ohashi, Y.: Phys. Rev. A 74, 063626 (2006)

    Article  ADS  Google Scholar 

  24. Diener, R.B., Sensharma, R., Randeria, M.: Phys. Rev. A 77, 023626 (2008)

    Article  ADS  Google Scholar 

  25. Salasnich, L., Manini, N., Parola, A.: Phys. Rev. A 72, 023621 (2005)

    Article  ADS  Google Scholar 

  26. Zwierlein, M.W. et al., Nature 435, 1047 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by TUBITAK (Grants No. 109T267, 210T050, 209T050) and TUBA. AK acknowledges the visiting program in IISER-Kolkata and P.K. Panigrahi. SB acknowledges DST grant number SR/S2/CMP/0023/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Basu, S. & Tanatar, B. Disorder Induced BCS–BEC Crossover in an Ultracold Fermi Gas. J Supercond Nov Magn 26, 1891–1895 (2013). https://doi.org/10.1007/s10948-012-1949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1949-7

Keywords

Navigation