Skip to main content
Log in

Abstract

Many superconducting delay line structures have been implemented, using various technologies. In this paper, a comprehensive overview of these delay-lines is given. The advantages and disadvantages of using different planar technologies for the construction of superconducting delay lines are discussed in greater detail. It was revealed that most of the superconducting delay line structures reported can be categorized into a few popular structures, namely meander line, double-spiral line, and unit-cell structures. Our recently published novel double-spiral meander delay line structure is also included for comparison. The new structure was implemented using both microstrip and coplanar technologies and the performance is superior compared to any delay lines reported previously. Besides, investigated meander and fractal delay line structures were also reported, with theoretical analysis in frequency and time domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lancaster, M.J.: Passive Microwave Device Applications of High-Temperature Superconductors. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Talisa, S.H., Janocko, M.A., Meier, D.J., Moskowitz, C., Grassel, R.L., Talvacchio, J., LePage, P., Buck, D.C., Nye, R.S., Pieseski, S.J., Wagner, G.R.: High-temperature superconducting wide band delay lines. IEEE Trans. Appl. Supercond. 5(2), 2291–2294 (1995)

    Article  Google Scholar 

  3. Sollner, T.C.L.G., Lyons, W.G., Arsenault, D.R., Anderson, A.C., Seaver, M.M., Boisvert, R.R., Slattery, R.L.: Superconducting cueing receiver for space experiment. IEEE Trans. Appl. Supercond. 5(2), 2071–2074 (1995)

    Article  Google Scholar 

  4. Liang, G.C., Shih, C.F., Withers, R.S., Cole, B.F., Johansson, M.E.: Space-qualified superconductive digital instantaneous frequency-measurement subsystem. IEEE Trans. Microwave Theory Tech. 44(7), 1289–1299 (1996)

    Article  Google Scholar 

  5. Jeffries, R.F., Greed, R.B., Voyce, D.C., Nudd, G.N., Humphreys, R.G., Goodyear, S.W.: Further development of a future ESM channeliser with high temperature superconducting filters. IEEE Trans. Appl. Supercond. 11(1), 410–413 (2001)

    Article  Google Scholar 

  6. Kapolnek, D.J., Aidnik, D.L., Hey-Shipton, G., James, T.W., Fenzi, N.O., Skoglund, D.L., Nilsson, B.J.L.: Integral FMCW radar incorporating an HTSC delay line with user-transparent cryogenic cooling and packaging. IEEE Trans. Appl. Supercond. 3(1), 2820–2823 (1993)

    Article  ADS  Google Scholar 

  7. Hattori, W., Yoshitake, T., Tahar, S.: A re-entrant delay-line memory using a YBa2Cu3O7−δ coplanar delay-line. IEEE Trans. Appl. Supercond. 9(2), 3829–3832 (1999)

    Article  Google Scholar 

  8. Huang, F.: Thin-film HTS delay-line filters. Cryogenics 37(10), 671–679 (1997)

    Article  Google Scholar 

  9. Cheung, H.C.H., Holroyd, M., Huang, F., Lancaster, M.J., Aschermann, B., Getta, M., Muller, G., Schlick, H.: 125% Bandwidth superconducting chirp filters. IEEE Trans. Appl. Supercond. 7(2), 2359–2362 (1997)

    Article  Google Scholar 

  10. Wang, Y., Su, H.T., Huang, F., Lancaster, M.J.: Wideband superconducting coplanar delay lines without wire-bonding. IEEE Trans. Microwave Theory Tech. MTT-53(7), 2348–2354 (2005)

    Article  Google Scholar 

  11. Su, H.T., Wang, Y., Huang, F., Lancaster, M.J.: Wide-band superconducting microstrip delay line. IEEE Trans. Microwave Theory Tech. MTT-52, 11 (2004)

    Google Scholar 

  12. Ikalainen, P.K., Matthaei, G.L.: Wide-band, forward-coupling microstrip hybrids with high directivity. IEEE Trans. Microwave Theory Tech. 35(8), 719–725 (1987)

    Article  ADS  Google Scholar 

  13. Talisa, S.H., Janocko, M.A., Meier, D.J., Moskowitz, C., Grassel, R.L., Talvacchio, J., LePage, P., Buck, D.C., Nye, R.S., Pieseski, S.J., Wagner, G.R.: High-temperature superconducting wide band delay lines. IEEE Trans. Appl. Supercond. 5(2), 2291–2294 (1995)

    Article  Google Scholar 

  14. Gandolfo, D.A., Boornard, A., Morris, L.C.: Superconductive microwave meander lines. J. Appl. Phys. 39(6), 2657–2660 (1968)

    Article  ADS  Google Scholar 

  15. Lichtenberg, C.L., Meyers, W.J., Kawecki, T.G., Peltzer, A.R., Johnson, M.S., Nisenoff, M., Price, G.E.: The high temperature superconductivity space experiment (HTSSE). Appl. Supercond. 1(7–9), 1313–1331 (1993)

    Article  Google Scholar 

  16. Hohenwarter, G.K.G., Track, E.K., Drake, R.E., Patt, R.: Forty five nanoseconds superconducting delay lines. IEEE Trans. Appl. Supercond. 3(1, Part 4), 2804–2807 (1993)

    Article  ADS  Google Scholar 

  17. Fenzi, N., Aidnik, D., Skoglund, D., Rohlfing, S.: Development of high temperature superconducting 100 nanosecond delay line. In: Hammond, R.B., Richard, S.W. (eds.) High-Tc Microwave Superconductors and Applications. Proceedings of the SPIE, vol. 2156, pp. 143–151 (1994)

  18. Tsang, K.F., Chan, W.S., Jing, D.: High Tc superconductor CPW delay line. Electron. Lett. 33(16), 1393–1395 (1997)

    Article  Google Scholar 

  19. Bourne, L.C., Hammond, R.B., Robinson, McD., Eddy, M.M., Olson, W.L., James, T.W.: Low-loss microstrip delay line in Tl2Ba2CaCu2O8. Appl. Phys. Lett. 56(23), 2333–2335 (1990)

    Article  ADS  Google Scholar 

  20. Track, E.K., Hohenwarter, G.K.G., Madhavrao, L.R., Patt, R., Drake, R.E., Radparvar, M.: Fabrication and characterization of YBCO microstrip delay lines. IEEE Trans. Mag. 27(2), 2936–2939 (1991)

    Article  ADS  Google Scholar 

  21. Track, E.K., Drake, R.E., Hohenwarter, G.K.G.: Optically modulated superconducting delay lines. IEEE Trans. Appl. Supercond. 3(1), 2899–2902 (1993)

    Article  ADS  Google Scholar 

  22. Liang, G.C., Withers, R.S., Cole, B.F., Garrison, S.M., Johansson, M.E., Ruby, W.S., Lyons, W.G.: High-temperature superconducting delay lines and filters on sapphire and thinned LaAlO3 substrates. IEEE Trans. Appl. Supercond. 3(3), 3037–3041 (1993)

    Article  ADS  Google Scholar 

  23. Shen, Z.-Y., Pang, P.S.W., Holstein, W.L., Wilder, C., Dunn, S., Face, D.W., Laubacher, D.B.: High Tc superconducting coplanar delay line with long delay and low insertion loss. In: 1991 IEEE MTT-S International Microwave Symposium, vol. 3, pp. 1235–1238 (1991)

  24. Hofer, G.J., Kratz, H.A., Schultz, G., Sollner, J., Windte, V.: High temperature superconductor coplanar delay lines. IEEE Trans. Appl. Supercond. 3(1), 2800–2803 (1993)

    Article  ADS  Google Scholar 

  25. Wu, D.S., Wang, H.Y., Hu, L.P., Zhang, C.X., Yang, B.C., Wang, X.P.: High-temperature superconducting microwave delay lines. Physica C 282–287, 2525–2526 (1997)

    Article  Google Scholar 

  26. Lyons, W.G., Withers, R.S., Hamm, J.M., Anderson, A.C., Mankiewich, P.M., O’Malley, M.L., Howard, R.E.: High Tc superconductive delay line structures, and signal conditioning networks. IEEE Trans. Mag. 27(2), 2932–2935 (1991)

    Article  ADS  Google Scholar 

  27. Hornak, L.A., Hatamian, M., Tewksbury, S.K., Burkhardt, E.G., Howard, R.E., Mankiewich, P.M., Straughn, B.L., Brandle, C.D.: Experiments with a 31-cm high Tc superconducting thin film transmission line. In: 1989 IEEE MTT-S International Microwave Symposium, vol. 2, pp. 623–626 (1989)

  28. Hofer, G.J., Kratz, H.A.: Superconducting delay lines and chirp filters. In: EUCAS, Gottingen, Germany, October 1993, pp. 1517–1520 (1993)

  29. Schulz, G., Sollner, J., Guttler, H., Windte, V., Hofer, G.J., Kratz, H.A.: Fabrication of coplanar HF analog devices. In: EUCAS, Gottingen, Germany, October 1993

  30. Wu, R.B., Chao, F.L.: Laddering wave in serpentine delay line. IEEE Trans. Compon. Packag. Manuf. Technol. Part B: 18(4), 644–650 (1995)

    Article  Google Scholar 

  31. Wu, R.B., Chao, F.L.: Flat spiral delay line design with minimum crosstalk penalty. IEEE Trans. Compon. Packag. Manuf. Technol. Part B: 19(2), 397–402 (1996)

    Article  MathSciNet  Google Scholar 

  32. Rubin, B.J., Singh, B.: Study of meander line delay in circuit boards. IEEE Trans. Microwave Theory Tech. 48(9), 1452–1460 (2000)

    Article  Google Scholar 

  33. Orhanovic, N., Raghuram, R., Matsui, N.: Characterization of microstrip meanders in PCB interconnects. In: 2000 Electronic Components and Technology Conference, pp. 508–512 (2000)

  34. Sudo, T., Kudo, J., Ko, Y., Ito, K.: Experimental characterization and numerical modelling approach of meander delay lines. In: 2002 IEEE International Symposium on Electromagnetic Compatibility, September 2002, pp. 711–715 (2002)

  35. Weiss, J.A.: Dispersion and field analysis of a microstrip meander-line slow-wave structure. IEEE Trans. Microwave Theory Tech. 22(12), 1194–1201 (1974)

    Article  ADS  Google Scholar 

  36. Agrawal, A.K.: Dispersion in n coupled microstrip meanders. IEEE Trans. Microwave Theory Tech. 28(8), 927–932 (1980)

    Article  ADS  Google Scholar 

  37. Sonnet, ver. 8. Sonnet Software, Liverpool, NY (2002)

  38. Werner, D.H., Ganguly, S.: An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45(1), 38–57 (2003)

    Article  Google Scholar 

  39. Cohen, N.: Fractal antenna applications in wireless telecommunications. In: Electronics Industries Forum of New England, Professional Program Proceedings, 6–8 May 1997, pp. 43–49 (1997)

  40. Prigiobbo, A., Barra, M., Cassinese, A., Cirillo, M., Marafioti, F., Russo, R., Vaglio, R.: Superconducting resonators for telecommunication application based on fractal layout. Supercond. Sci. Technol. 17(5), S427–S431 (2004)

    Article  ADS  Google Scholar 

  41. Kim, I.K., Kingsley, N., Morton, M., Bairavasubramanian, R., Papapolymerou, J., Tentzeris, M.M., Yook, J.-G.: Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic. IEEE Trans. Microwave Theory Tech. 53(9), 2943–2948 (2005)

    Article  Google Scholar 

  42. Barra, M., Collado, C., Mateu, J., O’Callaghan, J.M.: Miniaturization of superconducting filters using Hilbert fractal curves. IEEE Trans. Appl. Supercond. 15(3), 3841–3846 (2005)

    Article  Google Scholar 

  43. Advanced Design System (ADS) Simulation Tools. Agilent Technol., Palo Alto, CA (2001)

  44. Su, H.T., Wang, Y., Huang, F., Lancaster, M.J.: Characterizing a double-spiralled meander superconducting microstrip delay line using a resonator technique. In: 2004 IEEE MTT-S International Microwave Symposium, pp. 135–138 (2004)

  45. Kuylenstierna, D., Vorobiev, A., Linner, P., Gevorgian, S.: Ultrawide-band tunable true-time delay lines using ferroelectric varactors. IEEE Trans. Microwave Theory Tech. 53(6), 2164–2170 (2005)

    Google Scholar 

  46. Chen, L., Zhu, Q., Xu, S.: Delay lines based on left-handed transmission line structure. Microwave Opt. Technol. Lett. 48(10), 1998–2001 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieng Tiong Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, H.T., Wang, Y., Huang, F. et al. Superconducting Delay Lines. J Supercond Nov Magn 21, 7–16 (2008). https://doi.org/10.1007/s10948-007-0239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-007-0239-2

Keywords

Navigation