Skip to main content
Log in

The Never-Ending Search for High-Temperature Superconductivity

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. K. Onnes, Comm. Phys. Lab. Univ. Leiden. 122b (1911).

  2. D. Schoenberg, Superconductivity (Cambridge University Press, London, 2nd Edition, 1952), reprinted with an additional appendix, 1960.

    Google Scholar 

  3. V. L. Ginzburg and L. D. Landau, JETP 20, 1064 (1950).

    Google Scholar 

  4. B. Sevin and J. Bardeen, Handbuck der Physik, Vol. XV: Low Temperature Physics II, S. Flügge, ed. (Springer-Verlag, Berlin, 1956).

    Google Scholar 

  5. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. W. Meissner, Z. Fur. Phys. 58, 570 (1929).

    Article  ADS  Google Scholar 

  7. W. Meissner, H. Franz, and H. Westerhoff, Z. Phys. 75, 521 (1932).

    Article  ADS  Google Scholar 

  8. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  9. J. K. Hulm and B. T. Matthias, Phys. Rev. 87, 799 (1952).

    Article  ADS  Google Scholar 

  10. B. T. Matthias, Prog. Low Temp. Phys. 2, 138 (1957); J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).

    Google Scholar 

  11. B. W. Roberts, J Phys. Chem. Ref. Data 5, 581 (1976).

    Article  ADS  Google Scholar 

  12. B. T. Matthias, T. H. Geballe, and E. Corenzwit, Rev. Modern Phys. 35, 1 (1963).

    Article  ADS  Google Scholar 

  13. R. M. White and T. H. Geballe, Long Range Order in Solids (Academic Press, London, 1979).

    Google Scholar 

  14. G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).

    Article  ADS  Google Scholar 

  15. B. T. Matthias, T. H. Geballe, S. Geller, and E. Corenzwit, Phys. Rev. 95, 1435 (1954).

    Article  ADS  Google Scholar 

  16. J. E. Kunzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick, Phys. Rev. Lett. 6(3), 89 (1961).

    Article  ADS  Google Scholar 

  17. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  18. X. F. Sun, S. Ono, Y. Abe, S. Komiya, K. Segawa, and Y. Ando, PRL 96, 17008 (2006); H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z. X. Shen, and M. Greven, PRB 69, 64512 (2004).

    Article  ADS  Google Scholar 

  19. V. L. Ginzburg, About Science, Myself and Others (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

    Google Scholar 

  20. J. G. Bednorz and K. A. Mueller, Zeitschrift fur Physik B 64, 189 (1986).

    Article  ADS  Google Scholar 

  21. H. K. Onnes and W. Tuyn, Leiden Comm. 160b (1922).

  22. E. Maxwell, Phys. Rev. 78, 477 (1950); C. Reynolds, B. Serin et al., Phys. Rev. 78, 487.

    Article  ADS  Google Scholar 

  23. J. M. Rowell and W. L. Macmillan, in Superconductivity, R. D. Parks, ed. (Dekker, New York, 1969).

    Google Scholar 

  24. P. B. Allen and R. C. Dynes, PRB 12, 905 (1975).

    Article  ADS  Google Scholar 

  25. P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962); G. M. Eliashberg, JETP 11, 696 (1960); W. L. MacMillan, Phys. Rev. 167, 331 (1968).

  26. W. A. Little, Phys. Rev. A 134, 1416 (1964).

    Article  ADS  Google Scholar 

  27. V. L. Ginzburg, Phys. Lett. 13, 101 (1964).

    ADS  Google Scholar 

  28. D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B 7, 1020 (1973).

    Article  ADS  Google Scholar 

  29. M. L. Cohen and P. W. Anderson, in Proceedings of the AIP Conference on d- and f-Band Metals, D. H. Douglass, ed. (American Institute of Physics, New York, 1972).

    Google Scholar 

  30. V. L. Ginzburg and D. A. Kirznits, eds., High-Temperature Superconductivity, translated from Russian by A. K. Agyel and edited by Joseph Birman (Consultants Bureau, Plenum Press, New York, 1982).

  31. P. W. Andersen, PRL 343, 953 (1975).

    Article  ADS  Google Scholar 

  32. I. A. Chernik and S. N. Lykov, Pis’ma Zh Eksp Teor Fiz 7, 94 (1981); Sov. Phys. Solid State 23, 817 (1981).

    Google Scholar 

  33. V. I. Kaidanov and Yu. I. Ravich, Sov. Phys. Usp. 28, 31 (1985).

    Article  ADS  Google Scholar 

  34. S. A. Nemov and Yu. I. Ravich, Sov. Phys. Usp. 41, 735 (1998).

    Google Scholar 

  35. B. Y. Moyzhes and S. G. Suprun, Sov. Phys. Solid State 24, 309 (1982); I. A. Drabkin and B. Y. Moyzhes, Sov. Phys. Solid State 29(2), 252 (1987).

    Google Scholar 

  36. Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, PRL 94, 157002 (2005).

    Article  ADS  Google Scholar 

  37. M. Dzero and J. Schmalien, PRL 94, 157003 (2005).

    Article  ADS  Google Scholar 

  38. Y. Matsushita et al., unpublished.

  39. J. K. Hulm, M. Askin, D. W. Deis, and C. K. Jones, Prog. Low Temp. Phys. VI, 205 (1970).

    Article  Google Scholar 

  40. M. Imada, A Fujjimori, and Y. Tokura, Rev. Modern Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  41. S. Chakravarty, A. Sudho, and P. W. Andersen, Science 261, 351 (1993).

    Article  Google Scholar 

  42. G. Koster, T. H. Geballe, and B. Moyzhes, Phys. Rev. B 66, 085109 (2002).

    Article  ADS  Google Scholar 

  43. L. A. Drabkin, B. Ya. Mozyhes, and S. G. Suprun, Sov. Phys. Solid State 27, 7 (1985).

    Google Scholar 

  44. F. A. Cotton and G.Wilkenson, Advanced Inorgasnic Chemistry (5th Edition, John Wiley, NY, 1988).

    Google Scholar 

  45. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  46. M. Imada, A. Fujimori, and Y. Tokura, Rev. Modern Phys. 70, 1040 (1998); Y. Ando, et al., Phys. Rev. Lett 87, 17001 (2001).

  47. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Eudok, Rev. Modern Phys. 70, 897 (1998).

    Article  ADS  Google Scholar 

  48. J. Orenstein and A. Millis, Science (2002); M. Imada, A. Fujimora, and Y. Tokura, Rev. Modern Phys. 70, 1039 (1998); D. N. Basov and T. Timusk, Rev. Modern Phys. 77, 744 (2005); E. W. Carlson, V. J. Emery, S. A. Kivelson, and D. Orged, in The Physics of Conventional and Unconventional Superconductors, K. H. Bennema and J. B. Ketterson, eds. (Springer-Verlag, Berlin, 2004).

  49. M. Karppinen, M. Kotiranta, T. Nakane et al., Phys. Rev. B 67, 134522 (2003).

    Article  ADS  Google Scholar 

  50. T. H. Geballe and B. Y. Mozhes, Physica C 341, 1821 (2000).

    Article  ADS  Google Scholar 

  51. V. Oganesyan, S. Kivelson, T. H. Geballe, andB. Y. Moyzhes, PRB 65, 1725041 (2002).

    Google Scholar 

  52. T. Suzuki, M. Naqoshi, Y. Fukuda, et al., PRB 40, 5184 (1989).

    Article  ADS  Google Scholar 

  53. N. Terada, I. Akira, Y. Tanaka, K. Obara, and H. Ihara, IEEE Trans. Appl. Superconduct. 11, 3126–3129 (2001).

    Article  Google Scholar 

  54. J. G. Kuzemskaya, A. L. Kuzemsky, and A. A. Cheglokov, J. Low Temp. Phys. 118, 147 (2000).

    Article  Google Scholar 

  55. S. Chakravarty, H.-Y. Kee, and K. Voelker, Nature 428, 53 (2004).

    Article  ADS  Google Scholar 

  56. H. Kotakawa et al., PRB 69, 014501 (2004).

    Article  ADS  Google Scholar 

  57. H. Mukuda, M. Abe, Y. Araki, H. Kotegawa, Y. Kitaoka, K. Tokiwa, T. Watanabe, A. Iyo, H. Kito, and Y. Tanaka, preprint.

  58. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature 422, 873 (2003).

    Article  ADS  Google Scholar 

  59. Y. Cao, Q. Xiong, Y. Y. Xue, and C. W. Chu, PRB 52, 6854 (1995).

    Article  ADS  Google Scholar 

  60. J. M. Tranquada, B. J. Sternleib, J. D. Axe et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  61. C. H. Booth, F. Bridges et al., PRB 52, 15745 (1995).

    Article  ADS  Google Scholar 

  62. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

    Article  ADS  Google Scholar 

  63. S. Sasaki, S. Watanabe, Y. Yamada, F. Ishikawa, K. Fukuda, and S. Sekiya, cond-mat/0603067 (2006).

  64. M. Matsukawa, Y. Yamada et al., Physica C 411, 101 (2004).

    Article  ADS  Google Scholar 

  65. R. Fehrenbacher et al., Phys. Rev. Lett. 70, 3471 (1993).

    Article  ADS  Google Scholar 

  66. S. Watanabe, Y. Yamada, and S. Sasaki, Physica C 426–431, 473–477 (2005).

    Article  Google Scholar 

  67. K. Nakada, H. Ikuta, S. Hou et al., Physica C 357, 186 (2001).

    Article  ADS  Google Scholar 

  68. R. L. Greene, G. B. Street, and L. J. Suter, PRL 334, 577 (1975).

    Article  ADS  Google Scholar 

  69. T. H. Geballe and B. Moyzhes, Ann. Phys. 13, 2026 (2004).

    Article  Google Scholar 

  70. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).

    Google Scholar 

  71. T. Z. Kresin and S. A. Wolf, PRB 46, 6458 (1992).

    Article  ADS  Google Scholar 

  72. D. N. Basov and T. Timusk, Rev. Modern Phys. 77, 744 (2005).

    Article  Google Scholar 

  73. T. H. Geballe and G. Koster, Treatise on superconductivity, in Proceedings of SPIE on Strongly Correlated Electron Materials; Physics and Nanoengineering, Vol. 5932, I. bozovic and D. Pavuna, eds. (SPIE, Bellingham, WA, 2005), in press.

    Google Scholar 

  74. S. Hori et al., Phys. Rev. B 61, 6327 (2000); N. E. Hussey et al., Phys. Rev. Lett. 89, 86601 (2002)

    Article  ADS  Google Scholar 

  75. M. H. Julien, Y. Tokunaga, T. Feher et al., cond-mat., 0505213 (2005).

  76. T. Mizokawa, K. Nakada, C. Kim, Z. X. Shen et al., Phys. Rev. B 65, 193101 (2002).

    Article  ADS  Google Scholar 

  77. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Modern Phys. 70, 897 (1998).

    Article  ADS  Google Scholar 

  78. L. Lu et al., condmat., 0501436 (2005).

  79. J. Lorenzana and G. A. Sawatzky, Phys. Rev. Lett. 74, 1867 (1995); J. Lorenzana and G. A. Sawatzky, Phys. Rev. B 52, 9576 (1995).

    Article  ADS  Google Scholar 

  80. Y. J. Kim, J. P. Hill, S. Komiya, Y. Ando et al., PRB 70, 094524 (2004).

    Article  ADS  Google Scholar 

  81. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  82. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  83. S. A. Kivelson, E. Fradkin, and T. H. Geballe, Phys. Rev. B 69, 144505 (2004).

    Article  ADS  Google Scholar 

  84. A. K. McMAhan and S. Satpathy, Phys. Rev. B 38, 6650 (1988).

    Article  ADS  Google Scholar 

  85. J. Orenstein and A. J. Millis, Science 288, 458 (2000).

    Article  ADS  Google Scholar 

  86. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  87. N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, Ann. Phys. 13, 200310034 (2004).

    Article  Google Scholar 

  88. J. M. Tranquada, J. D. Axe, N. Ichikawa et al., Phys. Rev. B 54, 7489 (1996).

    Article  ADS  Google Scholar 

  89. T. H. Geballe and B. Y. Moyzhes, Physica C 341, 1821 (2000).

    Article  ADS  Google Scholar 

  90. X. G. Zheng et al., Phys. Rev. Lett. 85, 5170 (2000).

    Article  ADS  Google Scholar 

  91. T. H. Geballe and C. W. Chu, Comments Solid State Phys. 9, 115 (1979).

    Google Scholar 

  92. J. Bardeen, L. N. Coopeer, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. L. P. Gorkov, Sov. Phys. JETP 1364 (1959)

  94. P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

    Article  ADS  Google Scholar 

  95. G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York 1969), p. 665.

    Google Scholar 

  96. M. M. Collver and R. H. Hammond, Phys. Rev. Lett. 30, 92 (1973).

    Article  ADS  Google Scholar 

  97. P. W. Anderson, PRL 3, 325 (1959).

    Article  ADS  MATH  Google Scholar 

  98. J. Friedel, Nuovo Cimcento Suppl. 2, 287 (1958); P. W. Anderson, Phys. Rev. 124, 411 (1961); P. A. Wolff, Phys. Rev. 124, 1080 (1961).

  99. C. Herring, Phys. Rev. 114, 977 (59).

    Article  Google Scholar 

  100. Y. Maeno et al., Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  101. T. H. Geballe, G. W. Hull, B. T. Matthias, and E. Corenzwit, PRL 8, 313 (1962).

    Article  ADS  Google Scholar 

  102. E. Raub et al., J. Less Common Met. 12, 36 (1967).

    Article  Google Scholar 

  103. J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).

    Article  ADS  Google Scholar 

  104. J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  105. V. V. Osipov, I. V. Kochev, and S. V. Naumov, JETP 93, 1082 (2001).

    Article  ADS  Google Scholar 

  106. A. M. Gulian, K. S. Wood, D. Van Vechten, J. Claassen, R. J. Soulen, Jr., S. Qadri, M. Osofsky, A. Lucarelli, G. Luepke, G. R. Badalyan, V. S. Kuzanyan, A. S. Kuzanyan, and V. R. Nikoghosyan, Evidence for High-Temperature Superconductivity in Doped Laser-Processed Sr–Ru–O, cond-mat 0509313.

  107. J. T. Chen, L. X. Qian, L. Q. Wang, and L. E. Wenger, in Superconductivity and Applications, H. Kwok et al., eds. (Plenum Press, New York, 1990).

    Google Scholar 

  108. S. Reich and Y Tsabba, Eur. Phys. J. B 9, 1.

  109. A. Shengelaya, S. Reich, Y. Tsabba, and K. A. Mueller, Eur. Phys. J. B 12, 13 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geballe, T.H. The Never-Ending Search for High-Temperature Superconductivity. J Supercond 19, 261–276 (2006). https://doi.org/10.1007/s10948-006-0161-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0161-z

Keywords

Navigation