Skip to main content
Log in

Lattice Effects in Superconducting Cuprates

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

It is widely accepted that the remarkable properties of complex transition-metal oxides, such as colossal magnetoresistivity, are consequences of collaborative behaviors of many degrees of freedom, namely spin, charge, orbital moment and lattice. In stark contrast, most of the theories on the mechanism of the high-temperature superconductivity focus only on the spin degree of freedom. We suggest that the complex behaviors of the cuprates, including the electronic phase separation, involve charge as well as lattice degrees of freedom, and the interplay of the lattice and spin may be centrally important to the superconductivity of the cuprates. We speculate that an intermediate phase may appear when the Mott–Hubbard insulator is doped, and may support the two-component superconductivity involving spins and phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  Google Scholar 

  2. P. W. Anderson, The Theory of Superconductivity in the High-T C Cuprates (Princeton University Press, Princeton, 1993).

    Google Scholar 

  3. R. B. Laughlin, G. G. Lonzarich, P. Monthoux, and D. Pines, Adv. Phys. 50, 361 (2001).

    Article  ADS  Google Scholar 

  4. L. P. Gor'kov and A. V. Sokol, JETP Lett. 46, 420 (1987).

    ADS  Google Scholar 

  5. Y. Bar-Yam, T. Egami, J. Mustre-de Leon, and A. R. Bishop (eds.), Lattice Effects in High-T C Superconductors (World Scientific, Singapore, 1992).

    Google Scholar 

  6. T. Egami and S. J. L. Billinge, “Lattice Effects in High-TC Superconductors,” in Physical Properties of High Temperature Superconductors V, D. M. Ginsberg, ed. (World Scientific, 1996) p. 265.

  7. S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Nature (London) 413, 282 (2001).

    Article  ADS  Google Scholar 

  8. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London) 415, 412 (2002).

    Article  ADS  Google Scholar 

  9. K. McElroy, J. Lee, J. A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, and J. C. Davis, Science 309, 1048 (2005).

    Article  ADS  Google Scholar 

  10. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  11. J. G. Bednorz and K. A. Müller, Rev. Mod. Phys. 60, 585 (1988).

    Article  ADS  Google Scholar 

  12. V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120 (1997).

    Article  ADS  Google Scholar 

  13. W. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  14. J. P. Frank, “Experimental Studies of the Isotope Effect in High Temperature Superconductors,” in Physical Properties of High Temperature Superconductors IV, D. M. Ginsberg, ed. (World Scientific, 1994) p. 189.

  15. H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and M. Li, Science 295, 2239 (2002).

    Article  ADS  Google Scholar 

  16. A. V. Boris, N. N. Kovaleva, T. Holden, C. T. Lin, B. Keimer, and C. Bernhard, Science 304, 708 (2004).

    Article  ADS  Google Scholar 

  17. G. Deutscher, A. F. Santander-Syro, and N. Bontemps, Phys. Rev. B 72, 092504 (2005).

    Article  ADS  Google Scholar 

  18. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Nature (London) 412, 510 (2001).

    Article  ADS  Google Scholar 

  19. G.-H. Gwcon, T. Sasagawa, S. Y. Zhou, J. Graf, H. Takagi, D. H. Lee, and A. Lanzara, Nature (London) 430, 187 (2004).

    Article  ADS  Google Scholar 

  20. S. Tshihara, T. Egami, and M. Tachiki, Phys. Rev. B 55, 3163 (1997).

    Article  ADS  Google Scholar 

  21. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).

    Article  ADS  Google Scholar 

  22. J.-H. Chung, T. Egami, R. J. McQuecney, M. Yethiraj, M. Arai, T. Yokoo, Y. Petrov, H. A. Mook, Y. Endoh, S. Tajima, C. Frost, and F. Dogan, Phys. Rev. B 67, 014517 (2003).

    Article  ADS  Google Scholar 

  23. P. Piekarz and T. Egami, Phys. Rev. B 72, 054530 (2005).

    Article  ADS  Google Scholar 

  24. T. Cuk, F. Baumberger, D. H. Lu, N. Ingle, X. J. Zhou, H. Eisaki, N. Kaneko, Z. Hussain, T. P. Devereaux, N. Nagaosa, and Z.-X. Shen, Phys. Rev. Lett. 93, 117003 (2004).

    Article  ADS  Google Scholar 

  25. J. Lee, K. Fujita, K. McElroy, J. A. Slezak, M. Wang, Y. Aiura, H. Bando, M. Ishikado, T. Masui, J.-X. Zhu, A. V. Balatsky, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London) 442, 546 (2006).

    Google Scholar 

  26. V. J. Emery and S. A. Kivelson, J. Phys. Chem. Solids 59, 1705 (1998).

    Article  Google Scholar 

  27. S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).

    Article  ADS  Google Scholar 

  28. L. Pintchovius and W. Reichardt, Physical Properties of High Temperature Superconductors IV, D. Ginsberg, ed. Singapore, World Scientific, 1994) p. 295.

    Google Scholar 

  29. P. Horsch, G. Khaliullin, and V. Oudovenko, Physica C 341–348, 117 (2000).

    Article  Google Scholar 

  30. O. Rösch and O. Gunnarsson, Phys. Rev. B 70, 224518 (2004).

    Article  ADS  Google Scholar 

  31. T. Egami, AIP Conf. Proc. 535, 16 (2000).

    ADS  Google Scholar 

  32. F. Stercel, T. Egami, M. Yethiraj, M. Arai, T. Yokoo, H. A. Mook, C. Frost, and F. Dogan, unpublished.

  33. L. Pintchovius, D. Reznik, W. Reichardt, Y. Endoh, H. Hiraka, J. M. Tranquada, H. Uchiyama, T. Masui, and S. Tajima, Phys. Rev. B 69, 214506 (2004).

    Article  ADS  Google Scholar 

  34. B. V. Fine and T. Egami, unpublished.

  35. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  36. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  37. B. V. Fine, Phys. Rev. B 70, 224508 (2004).

    Article  ADS  Google Scholar 

  38. V. J. Emery and S. A. Kivelson, Physica C 209, 597 (1993).

    Article  ADS  Google Scholar 

  39. R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Article  ADS  Google Scholar 

  40. P. Piekarz and T. Egami, unpublished.

  41. X. J. Zhou, T. Yoshida, D.-H. Lee, W. L. Yang, V. Brouet, F. Zhou, W. X. Ti, J. W. Xiong, Z. X. Zhao, T. Sasagawa, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett. 92, 187001 (2004).

    Article  ADS  Google Scholar 

  42. P. D. Johnson, T. Valla, A. V. Fedorov, Z. Yusof, B. O. Wells, Q. Li, A. R. Moodenbaugh, G. D. Gu, N. Koshizuka, C. Kendziora, S. Jian, and D. G, Hinks, Phys. Rev. Lett. 87, 177007 (2001).

    Article  ADS  Google Scholar 

  43. K. M. Shen, F. Ronning, D. H. Lu, W. S. Lee, N. J. C. Ingle, W. Meevasana, F. Braumberger, A. Damascelli, N. P. Armitage, L. L. Miller, Y. Kphsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen, Phys. Rev. Lett. 93, 267002 (2004).

    Article  ADS  Google Scholar 

  44. P. A. Lee, in High Temperature Superconductivity, K. S. Bedell, et al. eds. (Addison-Wesley, Redwood City, 1990) p. 96.

    Google Scholar 

  45. F. Stercel, T. Egami, M. Yethiraj, H. A. Mook, and F. Dogan, unpublished.

  46. A. S. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981).

    Article  ADS  Google Scholar 

  47. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

    Article  ADS  Google Scholar 

  48. M. Cuoco, C. Noce, J. Ranninger, and A. Romano, Phys. Rev. B 67, 224504 (2003).

    Article  ADS  Google Scholar 

  49. A. Bussmann-Holder, K. A. Müller, R. Micnas, H. Büttner, A. Simon, A. R. Bishop, and T. Egami, J. Phys.: Cond. Matt. 13, L169 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egami, T. Lattice Effects in Superconducting Cuprates. J Supercond 19, 203–211 (2006). https://doi.org/10.1007/s10948-006-0158-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0158-7

Keywords

Navigation