Skip to main content
Log in

Stabilizing role of lithium in structures of complex oxide compounds as an instrument for crystal chemical design

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Crystal chemical features of some complex oxide lithium-containing compounds, in particular, triple molybdates, are considered to reveal the structure-forming significance of lithium. Its role is actually reduced to the realization of structures with a simpler composition through the introduction and heterovalent substitution. Specific stabilization ways can be very diverse owing to the high adaptability of lithium atoms in the structure. They can reside in the same crystallographic positions together with alkali metals (including potassium), medium-size, and even larger two- and three-charged cations and also to occupy the cavities. Such an adaptability and a low charge of the Li+ ion with its appropriate distribution in the structure allow the elimination of imbalance in cation charges and sizes of their coordination polyhedra. They also provide the filling of available vacancies, which produces a significant stabilizing effect. The stabilization of the structures with other cations or their combinations is exemplified. Attention is drawn to the relation between the structural and thermal stabilization. It is concluded that the crystal chemical stabilizing features of lithium and other cations can be used as an instrument for the design of novel compounds and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Blistanov, Crystals of Quantum and Nonlinear Optics [in Russian], MISIS, Moscow (2000).

    Google Scholar 

  2. C. Jousseaume, A. Kahn-Harari, D. Vivien, et al., J. Mater. Chem., 12, 1525 (2002).

    Article  CAS  Google Scholar 

  3. A. Bensalah, Y. Guyot, M. Ito, et al., Optical Mater., 26, 375 (2004).

    Article  CAS  Google Scholar 

  4. E. V. Makhonina, V. S. Pervov, and V. S. Dubasova, Chemistry Advances, 73, 1075 (2004).

    Google Scholar 

  5. Yu. A. Pyatenko and N. M. Chernitsova, Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 67 (1990).

    Google Scholar 

  6. M. J. Buerger, Am. Miner., 39, 600 (1954).

    CAS  Google Scholar 

  7. C. T. Li, Z. Kristallogr., 138, 216 (1973).

    Article  CAS  Google Scholar 

  8. H. Schulz and V. Tscherry, Acat Crystallogr., B28, 2168 (1972).

    Article  Google Scholar 

  9. A. Manthiram and J. B. Goodenough, J. Solid State Chem., 71, 349 (1987).

    Article  CAS  Google Scholar 

  10. V. K. Trunov, A. A. Evdokimov, T. P. Rybakova, and T. A. Berezina, Zh. Neorg. Khim., 24, 168–171 (1979).

    CAS  Google Scholar 

  11. E., Lukacevic, A. Santoro, and R. S. Roth, Solid State Ionics, 18/19, Part 2, 922 (1986).

    Article  Google Scholar 

  12. S. C. Abrahams and J. L. BernsteiNo, J. Chem. Phys., 45, 2745 (1966).

    Article  CAS  Google Scholar 

  13. S. P. Sirotinkin, A. N. Pokrovskii, and L. M. Kovba, Kristallographiya, 26, 385 (1981).

    CAS  Google Scholar 

  14. S. P. Sirotinkin, A. N. Pokrovskii, and L. M. Kovba, Zh. Neorg. Khim., 21, 789 (1976).

    CAS  Google Scholar 

  15. G. Torres-Trevino, E. E. Lachowskii, and A. R. West, J. Mater. Sci. Lett., 5, 615 (1986).

    Article  CAS  Google Scholar 

  16. N. Krishnamachari and C. Calvo, Acta Crystallogr., B29, 2611–2613 (1973).

    Google Scholar 

  17. A. P. Tyutyunnik, V. G. Zubkov, L. L. Surat, and B. V. Slobodin, Zh. Neorg. Khim., 49, 610 (2004).

    CAS  Google Scholar 

  18. S. F. Solodovnikov, E. G. Khaikina, Z. A. Solodovnikova, et al., Dokl. Ross. Akad. Nauk, 416, 60 (2007).

    Google Scholar 

  19. R. F. Klevtsova, L. P. Kozeeva, and P. V. Klevtsov, Kristallografiya, 19, 89 (1974).

    CAS  Google Scholar 

  20. O. M. Basovich, E. G. Khaikina, S. F. Solodovnikov, and G. D. Tsyrenova, J. Solid State Chem., 178, 1580 (2005).

    Article  CAS  Google Scholar 

  21. D. Yu. Naumov and E. V. Boldyreva, J. Struct. Chem., 40, No. 1, 86–93 (1999).

    Article  CAS  Google Scholar 

  22. I.I. Kiseleva, M. I. Sirota, R. I. Ozerov, et al., Kristallografiya, 24, 1277 (1979).

    CAS  Google Scholar 

  23. N. M. Kozhevnikova and M. V. Mokhosoev, Triple Molybdates [in Russian], Izd-vo BGU, Ulan-Ude (2000).

    Google Scholar 

  24. R. F. Klevtsova, L. A. Glinskaya, V. I. Alekseev, et al., J. Struct. Chem., 34, No. 5, 789–793 (1993).

    Article  Google Scholar 

  25. R. F. Klevtsova, A. D. Vasiliev, L. A. Glinskaya, et al., ibid., 33, No. 3, 443–447 (1992).

    Article  Google Scholar 

  26. V. A. Morozov, B. I. Lazoryak, V. A. Smirnov, et al., Zh. Neorg. Khim., 46, No. 6, 977 (2001).

    CAS  Google Scholar 

  27. S. F. Solodovnikov, P. V. Klevtsov, L. A. Glinskaya, and R. F. Klevtsova, Kristallografiya, 32, 618 (1987).

    CAS  Google Scholar 

  28. M. Müller,. B. O. Hildmann, and Th. Hahn, Acta Crystallogr., C43, 184 (1987).

    Google Scholar 

  29. Z. A. Solodovnikova, S. F. Solodovnikov, and E. S. Zolotova, ibid., C62, 16 (2006).

    Google Scholar 

  30. Z. A. Solodovnikova, Phase Formation and Structure of Triple Molybdates and Related Compounds in Systems Li2MoO4-A2 +MoO4-M2+MoO4 (A+=K, Rb, Cs; M2+=Mg, Mn, Co, Ni, Zn) [in Russian]: Avtoref. Diss. Kand. Khim. Nauk, Novosibirsk (2008).

  31. E.G. Khaikina, Synthesis, Characteristics of Phase Formation and Structure of Double and Triple Molybdates of Uni- and Trivalent Metals [in Russian], Avtoref. Dis. … Dokt. Khim. Nauk, Novosibirsk (2008).

  32. S. C. Abrahams, J. Chem. Phys., 46, 2052 (1967).

    Article  CAS  Google Scholar 

  33. Z. I. Khazheeva, M. V. Mokhosoev, N. N. Smirnyagina, et al., Dokl. Akad Nauk SSSR, 284, 128 (1985).

    CAS  Google Scholar 

  34. F. D’Yvoire and E. Bretey, Solid State Ionics, 28–30, 1259–1264 (1988).

    Article  Google Scholar 

  35. N. V. Belov, Outlines on Structural Mineralogy [in Russian], Nedra, Moscow (1976).

    Google Scholar 

  36. N. M. Kasper, Inorg. Chem., 8, 1000 (1969).

    Article  CAS  Google Scholar 

  37. E. J. Cussen, and T. W. S. Yip, J. Solid State Chem., 180, 1832 (2007).

    Article  CAS  Google Scholar 

  38. V. Thangadurai, H. Kaack, and W. J. F. Weppner, J. Am. Ceram. Soc., 86, 437 (2003).

    Article  CAS  Google Scholar 

  39. E. V. Murashova, Yu. A. Velikodnyi, and V. K. Trunov, J. Struct. Chem., 29, No. 4, 648–650 (1988).

    Article  Google Scholar 

  40. L. P. Keller, G. J. McCarthy, and R. J. Garvey, Mater. Res. Bull., 20, 459 (1985).

    Article  CAS  Google Scholar 

  41. A. I. Tursina, V. A. Efremov, Yu. M. Gasanov, and V. K. Trunov, Kristallografiya, 35, 625 (1990).

    CAS  Google Scholar 

  42. S. F. Solodovnikov, P. V. Klevtsov, and R. F. Klevtsova, ibid., 31, 440 (1986).

    CAS  Google Scholar 

  43. B. I. Lazoryak, Usp. Khim., 65, 307 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Solodovnikov.

Additional information

Original Russian Text Copyright © 2009 by S. F. Solodovnikov, E. G. Khaikina, and Z. A. Solodovnikova

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, Supplement, pp. S85–S92, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solodovnikov, S.F., Khaikina, E.G. & Solodovnikova, Z.A. Stabilizing role of lithium in structures of complex oxide compounds as an instrument for crystal chemical design. J Struct Chem 50 (Suppl 1), 78–85 (2009). https://doi.org/10.1007/s10947-009-0193-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0193-x

Keywords

Navigation