Skip to main content
Log in

Theoretical studies of the electronic and structural features of the fragments of dihydropholate reductase inhibitors

  • Proceedings of the XIV Seminar On Intermolecular Interactions and Molecule Conformations
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The effects of the structural characteristics of dihydrofolate reductase (DHFR) inhibitors on their tuberculostatic activity have been analyzed. It was shown that an increase in the electron density on bonds and atoms in the ring led to an increase in the biological activity of the compounds. A correlation was found between the biological activity and the characteristics of the critical points of electron density of bonds. The 3D- and 4D-QSAR studies with the CiS algorithm revealed the pharmacophore and antipharmacophore fragments of DHFR inhibitors, and regions of the receptor that are responsible for the biological action of dihydropyrimidines were found. Receptor ligand complexes were modeled. For a series of drugs containing a podand chain, it was found that the chain performed only the transport membranotropic function because the increase in the size of molecules due to the podand chain gives rise to steric hindrances when the chain is built in the receptor cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 616 (1964).

    Article  Google Scholar 

  2. A. M. Doweyko, J. Med. Chem., 31, No. 4, 1396 (1988).

    Article  CAS  Google Scholar 

  3. G. Schneider, K.-H. Baringhaus, and H. Kubinyi, Molecular Design: Concepts and Applications, Wiley, New York (2008).

    Google Scholar 

  4. G. Cruciani, R. Mannhold, H. Kubinyi, and G. Folkers, Molecular Interaction Fields: Applications in Drug Discovery and ADME Prediction, Wiley, New York (2005).

    Google Scholar 

  5. H. Kubinyi, Drug Discov. Today, 2, No. 5, 538 (1997).

    Article  CAS  Google Scholar 

  6. F. Ooms, Curr. Med. Chem., 7, No. 1, 141 (2000).

    CAS  Google Scholar 

  7. M. Karelson, Thesis doc. Molecular Descriptors in QSAR/QSPR, 5, 430, New York (2000).

    Google Scholar 

  8. V. A. Potemkin, M. A. Grishina, A. V. Belik, and O. N. Chupakhin, Khim. Farm. Zh., 36, No.o. 1, 22 (2002).

    CAS  Google Scholar 

  9. V. A. Potemkin, M. A. Grishina, and E. V. Bartashevich, J. Struct. Chem., 48, No. 1, 155–160 (2007).

    Article  CAS  Google Scholar 

  10. J. S. Blanchard, Ann. Rev. Biochem., 65, No. 6, 215 (1996).

    Article  CAS  Google Scholar 

  11. C. O. Kappe, Eur. J. Med. Chem., 35, 1043–1052 (2000).

    Article  CAS  Google Scholar 

  12. R. Li, R. Sirawaraporn, P. Chitnumsub, et al., J. Mol. Biol., 295, No. 7, 307 (2000).

    Article  CAS  Google Scholar 

  13. V. Potemkin and M. Grishina, Drug Discovery Today, 13, 952 (2008).

    Article  CAS  Google Scholar 

  14. V. A. Potemkin, E. V. Bartashevich, E. S. Pereyaslavskaya, and M. A. Grishina, Abstracts of Papers from the 13th Symp. on Intermolecular Interactions of Molecular Conformations [in Russian], St. Petersburg (2006), p. 179.

  15. N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc., 111, No. 23, 8551 (1989).

    Article  CAS  Google Scholar 

  16. J. H. Lii and N. L. Allinger, ibid., 8566.

  17. J. H. Lii and N. L. Allinger, ibid., 8576.

  18. V. A. Potemkin, M. A. Grishina, O. V. Fedorova, et al., Khim. Farm. Zh., 9, No. 3, 17 (2003).

    Google Scholar 

  19. E. V. Bartashevich, M. A. Grishina, V. A. Potemkin, and A. V. Belik, J. Struct. Chem., 43, 1033 (2002).

    Article  CAS  Google Scholar 

  20. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 112, No. 14, 1347 (1993).

    Article  Google Scholar 

  21. R. F. W. Bader, Atoms in Molecules — Quantum Theory, Oxford University Press, Oxford (1990).

    Google Scholar 

  22. I. G. Ovchinnikova, O. V. Fedorova, G. L. Rusinov, et al., Khim. Farm. Zh., 37, No. 11, 17 (2003).

    Google Scholar 

  23. R. Li, R. Sirawaraporn, P. Chitnumsub, et al., J. Mol. Biol., 295, 307 (2000).

    Article  CAS  Google Scholar 

  24. M. A. Grishina, V. A. Potemkin, K. M. Mikushina, et al., Biomed. Khim., 50, No. 1, 68 (2004).

    Google Scholar 

  25. M. A. Grishina, V. A. Potemkin, G. L. Rusinov, et al., Book of Abstr. 3rd Crystallographic course at the E. Majorana Centre “From genes to drugs via crystallography,” Erice (2002), p. 48.

  26. K. Mikushina, V. Potemkin, M. Grishina, and S. Laufer, Arch. Pharm. Pharm. Med. Chem., 335, 74 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Potemkin.

Additional information

Original Russian Text Copyright © 2009 by E. S. Afonkina, E. S. Pereyaslavskaya, V. A. Potemkin, M. A. Grishina, G. L. Rusinov, and O. V. Fedorova

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 5, pp. 1021–1026, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonkina, E.S., Pereyaslavskaya, E.S., Potemkin, V.A. et al. Theoretical studies of the electronic and structural features of the fragments of dihydropholate reductase inhibitors. J Struct Chem 50, 982–988 (2009). https://doi.org/10.1007/s10947-009-0146-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-009-0146-4

Keywords

Navigation