Skip to main content
Log in

Quantifying of Quantum Correlations in an Optomechanical System with Cross-Kerr Interaction

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Under the cross-Kerr effect, we investigate two different forms of quantum correlations in an optomechanical system consisting of a mechanical mode coupled with an optical mode. For this, we use the logarithmic negativity to quantify entanglement, while the Gaussian quantum discord is employed to quantify nonclassical correlations beyond entanglement. We show that the entanglement as well as the Gaussian discord between the optical and mechanical modes can be more enhanced with the introduction of the cross-Kerr coupling. The effects of other parameters are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Math. Proc. Cambridge Philos. Soc., 31, 555 (1935).

    Article  ADS  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

    MATH  Google Scholar 

  3. C. Monroe, Nature, 416, 238 (2002).

    Article  ADS  Google Scholar 

  4. T. Hirano, H. Yamanaka, M. Ashikaga, et al., Phys. Rev. A, 68, 042331 (2003).

    Article  ADS  Google Scholar 

  5. S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. Lett., 90, 137901 (2003).

    Article  ADS  Google Scholar 

  6. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A, 68, 062317 (2003).

    Article  ADS  Google Scholar 

  7. A. Harrow, P. Hayden, and D. Leung, Phys. Rev. Lett., 92, 187901 (2004).

    Article  ADS  Google Scholar 

  8. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, J. Mod. Opt., 51, 901 (2004).

    Article  ADS  Google Scholar 

  9. V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Rev. Mod. Phys., 77, 1225 (2005).

    Article  ADS  Google Scholar 

  10. M. Murao, D. Jonathan, M. Plenio, and V. Vedral, Phys. Rev. A, 59, 156 (1999).

    Article  ADS  Google Scholar 

  11. J.-S. Xu, X.-Y. Xu, C.-F. Li, et al., Nat. Commun., 1, 7 (2010).

    Article  ADS  Google Scholar 

  12. N. Aggarwal, K. Debnath, S. Mahajan, et al., Int. J. Quantum Inf., 12, 1450024 (2014).

    Article  MathSciNet  Google Scholar 

  13. D. Vitali, S. Mancini, and P. Tombesi, J. Phys. A: Math. Theor., 40, 8055 (2007).

    Article  ADS  Google Scholar 

  14. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev. Lett., 88, 120401 (2002).

    Article  ADS  Google Scholar 

  15. J. S. Bell, Physics, 1, 195 (1964).

    Article  Google Scholar 

  16. P. Giorda and M. G. A. Paris, Phys. Rev. Lett., 105, 020503 (2010).

    Article  ADS  Google Scholar 

  17. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  18. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  Google Scholar 

  19. P. G. Kwiat, K. Mattle, H. Weinfurter, et al., Phys. Rev. Lett., 75, 4337 (1995).

    Article  ADS  Google Scholar 

  20. S. Ritter, C. Noelleke, C. Hahn, et al., Nature, 484, 195 (2012).

    Article  ADS  Google Scholar 

  21. D. Porras and J. I. Cirac, Phys. Rev. Lett., 92, 207901 (2004).

    Article  ADS  Google Scholar 

  22. Z. R. Gong, H. Ian, Y. X. Liu, et al., Phys. Rev. A, 80, 065801 (2009).

    Article  ADS  Google Scholar 

  23. J. El Qars, M. Daoud, and Ahl Laamara, Int. J. Quantum Inf., 13, 1550041 (2015).

    Article  MathSciNet  Google Scholar 

  24. M. Amazioug, M. Nassik, and N. Habiballah, Int. J. Quantum Inf., 16, 1850043 (2018).

    Article  MathSciNet  Google Scholar 

  25. J. El Qars, M. Daoud, and Ahl Laamara, Eur. Phys. J. D, 71, 122 (2017).

    Article  ADS  Google Scholar 

  26. M. Amazioug, L. Jebli, M. Nassik, and N. Habiballah, Int. J. Mod. Phys. B, 34, 2050066 (2020).

    Article  ADS  Google Scholar 

  27. S. Chakraborty and A. K. Sarma, Phys. Rev. A, 97, 022336 (2018).

    Article  ADS  Google Scholar 

  28. P. R. Saulson, Gen. Relativ. Gravity, 43, 3289 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. L. Danilishin and F. Y. Khalili, Living Rev. Relativ., 15, 5 (2012).

    Article  ADS  Google Scholar 

  30. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett., 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett., 56, 930 (1986).

    Article  ADS  Google Scholar 

  32. D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes,” in Proceedings of the American Control Conference, p. 3488, IEEE (2007); https://doi.org/10.1109/ACC.2007.4282300

  33. H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).

    Article  ADS  Google Scholar 

  34. A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett., 100, 050502 (2008).

    Article  ADS  Google Scholar 

  35. E. Biham, G. Brassard, D. Kenigsberg, and T. Mor, Theor. Comput. Sci., 320, 15 (2004).

    Article  Google Scholar 

  36. R. Khan, F. Massel, and T. T. Heikkilä, Phys. Rev. A, 91, 043822 (2015).

    Article  ADS  Google Scholar 

  37. J. R. Johansson, G. Johansson, and F. Nori, Phys. Rev. A, 90, 053833 (2014).

    Article  ADS  Google Scholar 

  38. A. J. Rimberg, M. P. Blencowe, A. D. Armour, and P. D. Nation, New J. Phys., 16, 055008 (2014).

    Article  ADS  Google Scholar 

  39. J. M. Pirkkalainen, S. U. Cho, F. Massel, et al., Nat. Commun., 6, 6981 (2015).

    Article  ADS  Google Scholar 

  40. R. Sarala and F. Massel, Nanoscale Syst., 4, 18 (2015).

    Google Scholar 

  41. S. Chakraborty and A. K. Sarma, J. Opt. Soc. Am. B, 34, 1503 (2017).

    Article  ADS  Google Scholar 

  42. W. Xiong, D. Y. Jin, Y. Qiu, et al., Phys. Rev. A, 93, 023844 (2016).

    Article  ADS  Google Scholar 

  43. F. Zou, L. B. Fan, J. F. Huang, and J. Q. Liao, Phys. Rev. A, 99, 043837 (2019).

    Article  ADS  Google Scholar 

  44. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys, 86, 1391 (2014).

    Article  ADS  Google Scholar 

  45. V. Giovannetti and D. Vitali, Phys. Rev. A, 63, 023812 (2001).

    Article  ADS  Google Scholar 

  46. R. Benguria and M. Kac, Phys. Rev. Lett., 46, 1 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  47. E. A. Sete, H. Eleuch, and S. Das, Phys. Rev. A, 84, 053817 (2011).

    Article  ADS  Google Scholar 

  48. E. X. DeJesus and C. Kaufman, Phys. Rev. A, 35, 5288 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  49. D. Vitali, S. Gigan, A. Ferreira, et al., Phys. Rev. Lett., 98, 030405 (2007).

    Article  ADS  Google Scholar 

  50. C. Genes, A. Mari, P. Tombesi, and D. Vitali, Phys. Rev. A, 78, 032316 (2008).

    Article  ADS  Google Scholar 

  51. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  52. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A, 70, 022318 (2004).

    Article  ADS  Google Scholar 

  53. R. Simon, Phys. Rev. Lett., 84, 2726 (2000).

    Article  ADS  Google Scholar 

  54. L. Henderson and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).

    Article  ADS  Google Scholar 

  55. O. El Bir and M. El Baz, J. Opt. Soc. Am. B, 37, A237 (2020).

    Article  Google Scholar 

  56. S. Chakraborty and A. K. Sarma, Ann. Phys., 392, 39 (2018).

    Article  ADS  Google Scholar 

  57. S. Olivares, Eur. Phys. J. Spec. Top., 203, 3 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Driss Aoune.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoune, D., Habiballah, N. Quantifying of Quantum Correlations in an Optomechanical System with Cross-Kerr Interaction. J Russ Laser Res 43, 406–415 (2022). https://doi.org/10.1007/s10946-022-10065-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10065-y

Keywords

Navigation