Skip to main content
Log in

Features of the Electron Density Reconstruction for Plasma Objects with a Complex Structure

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the possibility of improving the reconstruction accuracy of electron density distributions ne(r) for plasma objects with a complex structure by processing the results of combined interferometry and schlieren photography. We carried out the numerical simulations for a spark channel with a micrometer-sized diameter developing in atmospheric air. We show that the data obtained from the schlieren images significantly refine the results of interferogram processing in the case of plasma objects when the uncertainty in the choice of symmetry of the object or its parts takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics, Cambridge University Press (1999).

  2. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Springer, New York (2001).

    Book  MATH  Google Scholar 

  3. G. V. Ostrovskaya, Tech. Phys., 53, 1103 (2008).

    Article  Google Scholar 

  4. A. I. Khirianova, E. V. Parkevich, and M. A. Medvedev, J. Russ. Laser Res., 40, 48 (2019).

    Article  Google Scholar 

  5. E. V. Parkevich, Instrum. Exp. Tech., 60, 383 (2017).

    Article  Google Scholar 

  6. E. V. Parkevich, M. A. Medvedev, A. S. Selyukov, et al., Opt. Lasers Eng., 116, 82 (2019).

    Article  Google Scholar 

  7. E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, et al., J. Exp. Theor. Phys., 124, 531 (2017).

    Article  ADS  Google Scholar 

  8. E. V. Parkevich, A. I. Khirianova, A. V. Agafonov, et al., J. Exp. Theor. Phys., 126, 422 (2018).

    Article  ADS  Google Scholar 

  9. E. V. Parkevich, G. V. Ivanenkov, M. A. Medvedev, et al., Plasma Sources Sci. Technol., 27, 11LT01 (2018).

  10. E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, et al., J. Russ. Laser Res., 40, 56 (2019).

    Article  Google Scholar 

  11. E. V. Parkevich, M. A. Medvedev, G. V. Ivanenkov, et al., Plasma Sources Sci. Technol., 28, 095003 (2019).

    Article  ADS  Google Scholar 

  12. E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, et al., Plasma Sources Sci. Technol., 28, 125007 (2019).

    Article  ADS  Google Scholar 

  13. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Principles of Statistical Radiophysics 3: Elements of Random Fields, Springer, Berlin (1989), Pt. 2.

  14. V. Tatarsky, Propagation of Waves in Turbulent Atmosphere [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  15. S. Solimeno, B. Crosignani, and P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation, Academic Press, New York (1986).

  16. U. Kogelschatz and W. R. Schneider, Appl. Opt., 11, 1822 (1972).

    Article  ADS  Google Scholar 

  17. A. I. Khirianova, E. V. Parkevich, and S. I. Tkachenko, Phys. Plasmas, 25, 073503 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Khirianova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khirianova, A.I., Parkevich, E.V. & Medvedev, M.A. Features of the Electron Density Reconstruction for Plasma Objects with a Complex Structure. J Russ Laser Res 41, 141–148 (2020). https://doi.org/10.1007/s10946-020-09859-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09859-9

Keywords

Navigation