Skip to main content
Log in

Entanglement Degree of Finite-Dimensional Pair Coherent States

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study in detail the entanglement degree of finite-dimensional pair coherent states (PCSs) in terms of different parameters involved in the coherent states. Since these states are a type of correlated two-mode states in finite dimension, we use the D concurrence and linear entropy to quantify their amount of entanglement. We show that the maximum entanglement can be obtained for two and threedimensional (finite-dimensional) PCSs, and states with higher dimensions cannot attain this limit. We generalize the discussion to a superposition of two states of this class and give the maximum entangled states for even and odd finite-dimensional PCSs. In addition, we consider the entanglement degree of nonlinear finite-dimensional PCSs and survey the maximality condition. Finally, we discuss the entanglement for a class of mixed states defined as a statistical mixture of two pure finite-dimensional PCSs. Our observations may have important implications in exploiting these states in quantum information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2002).

  2. D. Petz, Quantum Information Theory and Quantum Statistics, Springer Verlag, Berlin, Heidelberg (2008).

    MATH  Google Scholar 

  3. T. D. Ladd, F. Jelezko, R. Laflamme, et al., Nature, 464, 45 (2010).

    Article  ADS  Google Scholar 

  4. S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, et al., Nature, 440, 1022 (2006).

    Article  ADS  Google Scholar 

  5. O. Guhne and G. Toth, Phys. Rep., 474, 1 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  6. C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett., 70, 1895 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett., 69, 2881 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. K. Ekert, Phys. Rev. Lett., 67, 661 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. A. Nielsen, Phys. Rev. Lett., 93, 040503 (2004).

    Article  ADS  Google Scholar 

  10. C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen, Phys. Rev. Lett., 96, 020501 (2006).

    Article  ADS  Google Scholar 

  11. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A, 223, 1 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys. Rev. A, 65, 032323 (2002).

    Article  ADS  Google Scholar 

  13. Z. X. Juan, X. Hui, F. M. Fa, and Z. K. Cheng, Chin. Phys. B, 19, 034207 (2010).

    Article  ADS  Google Scholar 

  14. K. A. Brickman and C. Monroe, Rep. Prog. Phys., 73, 036401 (2010).

    Article  ADS  Google Scholar 

  15. P. C. Haljan, P. J. Lee, K. A. Brickman, et al., Phys. Rev. A, 72, 062316 (2005).

    Article  ADS  Google Scholar 

  16. M. Fox, Quantum Optics: An Introduction, 1st ed. Oxford University Press (2006).

  17. C. Gerry and P. Knight, Introductory Quantum Optics, Cambridge University Press (2005).

  18. G. Najarbashi and Y. Maleki, Int. J. Theor. Phys., 50, 2601 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Berrada, Opt. Commun., 285, 2227 (2012).

    Article  ADS  Google Scholar 

  20. K. Berrada, M. El Baz, and Y. Hassouni, J. Stat. Phys., 142, 510 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. K. Berrada, M. El Baz, and Y. Hassouni, Phys. Lett. A, 375, 298 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. K. Berrada and Y. Hassouni, Eur. Phys. J. D, 61, 513 (2010).

    Article  ADS  Google Scholar 

  23. K. Berrada, Y. Hassouni, and H. Eleuch, Commun. Theor. Phys., 56, 679 (2011).

    Article  ADS  MATH  Google Scholar 

  24. K. Berrada, A. Chafik, H. Eleuch, and Y. Hassouni, Int. J. Mod. Phys. B, 23, 2021 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. K. Berrada, M. El Baz, H. Eleuch, and Y. Hassouni, Int. J. Mod. Phys. C, 21, 291 (2010).

    Article  ADS  MATH  Google Scholar 

  26. S. J. van Enk, Phys. Rev. A, 72, (2005) 022308.

    Article  ADS  Google Scholar 

  27. S. J. van Enk and O. Hirota, Phys. Rev. A, 64, 022313 (2001).

    Article  ADS  Google Scholar 

  28. H. Fu, X. Wang, and A. I. Solomon, Phys. Lett. A, 291, 73 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. H. Chen and J. Zhang, Phys. Rev. A, 75, 022306 (2007).

    Article  ADS  Google Scholar 

  30. J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett., 95, 170501 (2005).

    Article  ADS  Google Scholar 

  31. X. Su, A. Tan, X. Jia, et al., Phys. Rev. Lett., 98, 070502 (2007) .

    Article  ADS  Google Scholar 

  32. M. Kim, J. Mod. Opt., 50, 1809 (2003).

    ADS  Google Scholar 

  33. K. Jensen, W. Wasilewski, H. Krauter, et al., Nature Phys., 7, 13 (2011).

    Article  ADS  Google Scholar 

  34. M. Ban, J. Opt. B, 1, L9 (1999).

    Article  ADS  Google Scholar 

  35. G. S. Agarwal, Phys. Rev. Lett., 57, 827 (1986) .

    Article  ADS  Google Scholar 

  36. G. S. Agarwal and A. Biswas, J. Opt. B: Quantum Semiclass. Opt., 7, 350 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  37. A.-S. F. Obada and E. M. Khalil, Opt. Commun., 260, 19 (2006).

    Article  ADS  Google Scholar 

  38. X. G. Meng, J. S. Wang, and B. L. Liang, Optik, 122, 2021 (2011).

    Article  ADS  Google Scholar 

  39. N. A. Peters, T. C. Wei, and P. G. Kwiat, Phys. Rev. A, 70, 052309 (2004).

    Article  ADS  Google Scholar 

  40. Z. H. Ma, W. G. Yuan, M. L. Bao, and X. D. Zhang, Quanum Inf. Comput., 11, 0070 (2011) .

    MathSciNet  Google Scholar 

  41. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  42. W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998) .

    Article  ADS  Google Scholar 

  43. K. Berrada, A. Mohammadzade, S. Abdel-Khalek, et al., Physica E, 45, 21 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khashami, F., Maleki, Y. & Berrada, K. Entanglement Degree of Finite-Dimensional Pair Coherent States. J Russ Laser Res 34, 388–401 (2013). https://doi.org/10.1007/s10946-013-9368-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-013-9368-1

Keywords

Navigation